gas stripping
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 42)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
Vol 156 ◽  
pp. 106327
Author(s):  
Pedro E. Plaza ◽  
Mónica Coca ◽  
Susana Lucas Yagüe ◽  
Gloria Gutiérrez ◽  
Eloísa Rochón ◽  
...  

2021 ◽  
Vol 923 (1) ◽  
pp. 28
Author(s):  
Andrea Franchetto ◽  
Matilde Mingozzi ◽  
Bianca M. Poggianti ◽  
Benedetta Vulcani ◽  
Cecilia Bacchini ◽  
...  

Abstract Making use of both MUSE observations of 85 galaxies from the survey GASP (GAs Stripping Phenomena in galaxies with MUSE) and a large sample from MaNGA (Mapping Nearby Galaxies at Apache Point Observatory survey), we investigate the distribution of gas metallicity gradients as a function of stellar mass for local cluster and field galaxies. Overall, metallicity profiles steepen with increasing stellar mass up to 1010.3 M ⊙ and flatten out at higher masses. Combining the results from the metallicity profiles and the stellar mass surface density gradients, we propose that the observed steepening is a consequence of local metal enrichment due to in situ star formation during the inside-out formation of disk galaxies. The metallicity gradient−stellar mass relation is characterized by a rather large scatter, especially for 109.8 < M ⋆/M ⊙ < 1010.5, and we demonstrate that metallicity gradients anti-correlate with the galaxy gas fraction. Focusing on the galaxy environment, at any given stellar mass, cluster galaxies have systematically flatter metallicity profiles than their field counterparts. Many subpopulations coexist in clusters: galaxies with shallower metallicity profiles appear to have fallen into their present host halo sooner and have experienced the environmental effects for a longer time than cluster galaxies with steeper metallicity profiles. Recent galaxy infallers, like galaxies currently undergoing ram pressure stripping, show metallicity gradients more similar to those of field galaxies, suggesting they have not felt the effect of the cluster yet.


2021 ◽  
Vol 922 (2) ◽  
pp. 131
Author(s):  
Neven Tomičić ◽  
Benedetta Vulcani ◽  
Bianca M. Poggianti ◽  
Ariel Werle ◽  
Ancla Müller ◽  
...  

Abstract Diffuse ionized gas (DIG) is an important component of the interstellar medium that can provide insights into the different physical processes affecting the gas in galaxies. We utilize optical IFU observations of 71 gas-stripped and control galaxies from the Gas Stripping Phenomena in galaxies (GASP) survey, to analyze the gas properties of dense ionized gas and DIG, such as metallicity, ionization parameter log(q), and the difference between the measured log[O i]/Hα and the value predicted by star-forming models given the measured log[Oiii]/Hβ (Δ log[O i]/Hα). We compare these properties at different spatial scales, among galaxies at different gas-stripping stages, and between disks and tails of the stripped galaxies. The metallicity is similar between the dense gas and DIG at a given galactocentric radius. The log(q) is lower for DIG compared to dense gas. The median values of log(q) correlate best with stellar mass and the most massive galaxies show an increase in log(q) toward their galactic centers. The DIG clearly shows higher Δ log[O i]/Hα values compared to the dense gas, with much of the spaxels having LIER/LINER-like emission. The DIG regions in the tails of highly stripped galaxies show the highest Δ log[O i]/Hα, exhibit high values of log(q), and extend to large projected distances from star-forming areas (up to 10 kpc). We conclude that the DIG in the tails is at least partly ionized by a process other than star formation, probably by mixing, shocks, and accretion of inter-cluster and interstellar medium gas.


2021 ◽  
Vol 922 (1) ◽  
pp. L6
Author(s):  
Andrea Franchetto ◽  
Stephanie Tonnesen ◽  
Bianca M. Poggianti ◽  
Benedetta Vulcani ◽  
Marco Gullieuszik ◽  
...  

Abstract Hydrodynamical simulations show that the ram pressure stripping in galaxy clusters fosters a strong interaction between stripped interstellar medium (ISM) and the surrounding medium, with the possibility of intracluster medium (ICM) cooling into cold gas clouds. Exploiting the MUSE observation of three jellyfish galaxies from the GAs Stripping Phenomena in galaxies with MUSE (GASP) survey, we explore the gas metallicity of star-forming clumps in their gas tails. We find that the oxygen abundance of the stripped gas decreases as a function of the distance from the parent galaxy disk; the observed metallicity profiles indicate that more than 40% of the most metal-poor stripped clouds are constituted by cooled ICM, in qualitative agreement with simulations that predict mixing between the metal-rich ISM and the metal-poor ICM.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anna C. Bohnenkamp ◽  
René H. Wijffels ◽  
Servé W. M. Kengen ◽  
Ruud A. Weusthuis

Abstract Background Ethyl acetate (C4H8O2) and hydrogen (H2) are industrially relevant compounds that preferably are produced via sustainable, non-petrochemical production processes. Both compounds are volatile and can be produced by Escherichia coli before. However, relatively low yields for hydrogen are obtained and a mix of by-products renders the sole production of hydrogen by micro-organisms unfeasible. High yields for ethyl acetate have been achieved, but accumulation of formate remained an undesired but inevitable obstacle. Coupling ethyl acetate production to the conversion of formate into H2 may offer an interesting solution to both drawbacks. Ethyl acetate production requires equimolar amounts of ethanol and acetyl-CoA, which enables a redox neutral fermentation, without the need for production of by-products, other than hydrogen and CO2. Results We engineered Escherichia coli towards improved conversion of formate into H2 and CO2 by inactivating the formate hydrogen lyase repressor (hycA), both uptake hydrogenases (hyaAB, hybBC) and/or overexpressing the hydrogen formate lyase activator (fhlA), in an acetate kinase (ackA) and lactate dehydrogenase (ldhA)-deficient background strain. Initially 10 strains, with increasing number of modifications were evaluated in anaerobic serum bottles with respect to growth. Four reference strains ΔldhAΔackA, ΔldhAΔackA p3-fhlA, ΔldhAΔackAΔhycAΔhyaABΔhybBC and ΔldhAΔackAΔhycAΔhyaABΔhybBC p3-fhlA were further equipped with a plasmid carrying the heterologous ethanol acyltransferase (Eat1) from Wickerhamomyces anomalus and analyzed with respect to their ethyl acetate and hydrogen co-production capacity. Anaerobic co-production of hydrogen and ethyl acetate via Eat1 was achieved in 1.5-L pH-controlled bioreactors. The cultivation was performed at 30 °C in modified M9 medium with glucose as the sole carbon source. Anaerobic conditions and gas stripping were established by supplying N2 gas. Conclusions We showed that the engineered strains co-produced ethyl acetate and hydrogen to yields exceeding 70% of the pathway maximum for ethyl acetate and hydrogen, and propose in situ product removal via gas stripping as efficient technique to isolate the products of interest.


2021 ◽  
Vol 36 (1) ◽  
pp. 107-117
Author(s):  
A.A. Garba

This study reviewed and unveiled the economic sizes and managing systems in aquaculture production. The focus had been on developing new technologies and management systems in aquaculture production that can produce fish food on an economically competitive basis while still maintaining environmental health. The technique of recirculating aquaculture system (RAS) had been discussed. Economic issues such as: adequately available quality water, economic sizes, management issues, financial capabilities, various investment options, species selection, cost of production, capitalization cost of unit process, cost of pumping and bio-filtration, gas stripping and pH control, solid wastes removal, economically competitive scale, labor requirements as wellas predicted cost of production. The economic comparison of broilers and catfish production were evaluated. Also, challenges against the effective aquaculture technological application and the prospects to economic realities and management systems in aquaculture production were also highlighted. It could be concluded that economic realities and management of RAS is the soft and live wire in aquacultural development especially in developing countries like Nigeria. It is therefore, recommended that fish farmers need to engage and be trained on the use of this new fish production technology for increase production and economy benefits.


2021 ◽  
Author(s):  
Godfrey Kabungo Gakingo ◽  
Tobias Muller Louw

Gas–liquid–liquid reactors are typically found in bioprocess setups such as those used in alkane biocatalysis and biological gas stripping. The departure of such reactors from traditional gas–liquid setups is by the introduction of a secondary (dispersed) liquid phase. The introduction of the latter results in complicated hydrodynamics as observed through measurements of velocity fields, turbulence levels and mixing times. Similarly, changes in mass transfer occur as observed through measurements of gas hold up, bubble diameters and the volumetric mass transfer coefficients. The design and analysis of such reactors thus requires the adoption of an approach that can comprehensively account for the various observed changes. This chapter proposes Computational Fluid Dynamics as an approach fit for this purpose. Key considerations, successes and challenges of this approach are highlighted and discussed based on a review of previously published case studies.


2021 ◽  
Vol 32 (7) ◽  
Author(s):  
Yuan Luo ◽  
Wei-Ping Lin ◽  
Pei-Pei Ren ◽  
Guo-Feng Qu ◽  
Jing-Jun Zhu ◽  
...  

Author(s):  
Alexander Akermann ◽  
Jens Weiermueller ◽  
Jonas Chodorski ◽  
Malte Nestriepke ◽  
Maria Baclig ◽  
...  

Brewers’ spent grain (BSG) is a low-value by-product of the brewing process, which is produced in large quantities every year. In this study, the lignocellulosic feedstock was used to run solid state fermentations with Cellulomonas uda. For aerobic processes, maximum cellulase activities of 0.98 nkat∙ml, maximum xylanase activities of 5.00 nkat∙ml and cell yields of 0.22 g∙g were achieved. Under anaerobic conditions, enzyme activities and cell yields were lower, but valuable liquid products (organic acids, ethanol) were produced with a yield of 0.41 g∙g. The growth phase of the organisms was monitored by measuring extracellular concentrations of two fluorophores pyridoxin (aerobic) and tryptophan (anaerobic) and by cell count. By applying reductive conditions to the anaerobic approach, the ratio of ethanol to acetate was increased from 1.08 to 1.59 mol∙mol. This ratio was further improved to 9.2 mol∙mol by lowering the pH from 7.4 to 5.0 without decreasing the final ethanol concentration. A scale up fermentation with 15w% BSG instead of 5w% BSG quadrupled the acetate concentration, whilst ethanol was removed by gas stripping. This study provides various ideas for optimizing and monitoring solid state fermentations, which can support feasibility and incorporation into holistic biorefining approaches in the future.


Author(s):  
L. Cortese ◽  
B. Catinella ◽  
R. Smith

Abstract One of the key open questions in extragalactic astronomy is what stops star formation in galaxies. While it is clear that the cold gas reservoir, which fuels the formation of new stars, must be affected first, how this happens and what are the dominant physical mechanisms involved is still a matter of debate. At least for satellite galaxies, it is generally accepted that internal processes alone cannot be responsible for fully quenching their star formation, but that environment should play an important, if not dominant, role. In nearby clusters, we see examples of cold gas being removed from the star-forming discs of galaxies moving through the intracluster medium, but whether active stripping is widespread and/or necessary to halt star formation in satellites, or quenching is just a consequence of the inability of these galaxies to replenish their cold gas reservoirs, remains unclear. In this work, we review the current status of environmental studies of cold gas in star-forming satellites in the local Universe from an observational perspective, focusing on the evidence for a physical link between cold gas stripping and quenching of the star formation. We find that stripping of cold gas is ubiquitous in satellite galaxies in both group and cluster environments. While hydrodynamical mechanisms such as ram pressure are important, the emerging picture across the full range of dark matter halos and stellar masses is a complex one, where different physical mechanisms may act simultaneously and cannot always be easily separated. Most importantly, we show that stripping does not always lead to full quenching, as only a fraction of the cold gas reservoir might be affected at the first pericentre passage. We argue that this is a key point to reconcile apparent tensions between statistical and detailed analyses of satellite galaxies, as well as disagreements between various estimates of quenching timescales. We conclude by highlighting several outstanding questions where we expect to see substantial progress in the coming decades, thanks to the advent of the Square Kilometre Array and its precursors, as well as the next-generation optical and millimeter facilities.


Sign in / Sign up

Export Citation Format

Share Document