scholarly journals Genetic variants in the G gamma-globin promoter modulate fetal hemoglobin expression in the Colombian population

2020 ◽  
Vol 43 (2) ◽  
Author(s):  
Cristian Fong ◽  
Yesica Mendoza ◽  
Guillermo Barreto
Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 815-817 ◽  
Author(s):  
S Ottolenghi ◽  
S Nicolis ◽  
R Taramelli ◽  
N Malgaretti ◽  
R Mantovani ◽  
...  

Abstract A survey of hemoglobinopathies in Northern Sardinia allowed the identification of two subjects heterozygous for a new type of G gamma hereditary persistence of fetal hemoglobin (HPFH). The G gamma-globin gene from the HPFH chromosome shows the presence of a T----C substitution 175 nucleotides upstream of the CAP site, adding a new example of single-point mutations occurring in the promoter region of the gamma-globin genes and linked to HPFH phenotypes. In this case the mutation affects the 3′ end nucleotide of a conserved octamer sequence known to be present in other regulatory elements of several genes.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2066-2066 ◽  
Author(s):  
Fernanda Marconi Roversi ◽  
Anderson Ferreira Cunha ◽  
Carolina Lanaro ◽  
Ana Flavia Brugnerotto ◽  
Maria Emília Favero ◽  
...  

Abstract Abstract 2066 Hereditary persistence of fetal hemoglobin (HPFH) is a condition that prevents hemoglobin switching and the consequent silencing of the gamma globin genes, resulting in continued hemoglobin (Hb) F synthesis in adults. Two types of HPFH are responsible for this phenotype: deletional HPFH – deletions in the end of the beta globin locus – and non-deletional HPFH (ndHPFH) – single point mutations in the proximal promoter of both gamma globin genes. Sickle cell anemia patients or beta-thalassemia patients that present HPFH show high levels of HbF that are associated with less severe clinical course in these diseases. The development of new therapies based on the reactivation of gamma globin expression may be important for the treatment of these patients. The Brazilian ndHPFH type is characterized as a C→G substitution in the A gamma globin promoter at position –195 and the molecular mechanism responsible for the reactivation of this gene in the Brazilian ndHPFH type remains unclear. In contrast to the British ndHPFH type (-198), where the mechanism responsible for the increase of HbF levels is mediated by the raising in the affinity for the Sp1 transcription factor (TF), the Brazilian ndHPFH mutation does not affect Sp1 binding. Thus, other TF may be involved in the reactivation of the A gamma globin gene in the Brazilian ndHPFH type. The aim of this study was to investigate the mechanism involved in the reactivation or repression of the A gamma globin gene in the Brazilian ndHPFH type and identify possible TF responsible for this phenotype. In vitro primary human erythroblast cultures, derived from human CD34+ hematopoietic cells from 4 Brazilian ndHPFH type subjects and 4 control subjects, were proliferated and differentiated into late stage erythroblasts. The nuclear extracts from predominantly basophilic and polychromatic erythroblasts were used to profile TF activity using Protein-DNA Array method. The analysis of the array densitometry identified a number of TF whose DNA binding activities were either enhanced or repressed in the Brazilian ndHPFH cultures. Among the TF analyzed, the NF-E1/YY1 and the PAX-1 were selected for this study. Since this assay requires a secondary method to confirm these results, nuclear extracts were used to conduct chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). ChIP was carried out using antibodies against NF-E1/YY1 and PAX-1 to quantify the binding to these TF to the –195 A gamma globin promoter region. EMSA was performed using probes with the same sequence spotted on the array membrane to analyze the activity of NF-E1/YY1 and PAX-1. Both methods confirmed and validated the previous array results. NF-E1/YY1 is a transcription factor that represses embryonic (epsilon) and fetal (gamma) globin genes. Protein-DNA array and EMSA showed a decreased binding of NF-E1/YY1 in Brazilian ndHPFH nuclear extracts and ChIP analysis revealed diminished NF-E1/YY1 occupancy at the –195 A gamma globin promoter region of Brazilian ndHPFH. The consensus binding site for NF-E1/YY1 is a CCAN motif that is observed between the –195 and –192 position in the A gamma globin promoter region. The C→G substitution at –195 position may disrupt this DNA binding site, cause decreased NF-E1/YY1 interaction and probably allows the binding of PAX-1, a transcriptional activator with a paired box DNA-binding domain that has as a DNA binding core motif, the sequence TTCCGC. This sequence, located between the –199 and –194 position in the A gamma globin promoter, is only presente in the Brazilian type of ndHPFH. Our protein-DNA array and EMSA results showed an increased binding of PAX-1 in the Brazilian ndHPFH nuclear extracts and quantitative ChIP analysis with anti-PAX-1 antibody showed that PAX-1 binds to the –195 A gamma globin promoter region only in the presence of this C→G substitution. These results suggest that the –195 site (C→G) in the A gamma globin promoter region may decrease NF-E1/YY1 binding and increase PAX-1 binding in this DNA region, probably resulting in the reactivation of the A gamma globin gene. The increase in the HbF levels in the Brazilian ndHPFH occurs differently from the British ndHPFH type and represents a novel mechanism of A gamma globin reactivation. Such findings may lead to the development of future therapeutic strategies for HbF induction in the treatment of other hemoglobinopathies. Support by FAPESP and CNPq. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3263-3263 ◽  
Author(s):  
Tara L Arvedson ◽  
Lynn Tran ◽  
Sandra L Ross ◽  
Sean Yoder ◽  
Alexandra Hertz ◽  
...  

Abstract Abstract 3263 Introduction Sickle cell disease and beta thalassemia are disorders caused by mutations in adult hemoglobin (HbA) or defects in HbA expression. A potential therapeutic solution is reactivation of fetal hemoglobin (HbF) expression. Although HbF, comprising two alpha and two gamma globin chains, is the primary form of hemoglobin expressed in utero, gamma globin expression is silenced in adults. One proposed mechanism of gamma globin silencing involves binding of the direct repeat erythroid definitive (DRED) repressor complex to sequences in the gamma globin promoter. The DRED complex is reported to include the orphan nuclear hormone receptors TR2 and TR4, lysine specific demethylase (LSD1) and DNA methyltransferase (DNMT1). As both LSD1 and DNMT1 are epigenetic modifiers, gamma globin repression is proposed to be mediated by LSD1- and DNMT1-induced epigenetic changes. To investigate the role of DNMT1 and LSD1 in HbF silencing, HbF expression was evaluated in an erythroid differentiation model where hematopoietic progenitor cells were treated with either DNMT1 or LSD1 small molecule inhibitors or siRNA. Methods Human hematopoietic progenitor cells from healthy donors were induced to become erythroid using a two step protocol including erythropoietin, SCF, IL-3 and hydrocortisone for days 1–7 and erythropoietin and SCF for days 8–14. Cultures were treated with a range of concentrations of either tranylcypromine or S2101 (LSD1 inhibitors) or 5-azacytidine (DNMT1 inhibitor) and compared to HbF-inducing, positive control small molecules pomalidomide and lenalidomide. Cultures were also treated with LSD1 siRNAs and compared to controls. The effect of treatment on gamma, beta and alpha globin transcription was determined by qRT-PCR. The effect of treatment on HbA and HbF levels was determined by ELISA, HPLC, flow cytometry and imaging. Differentiation was characterized by morphology and flow-based detection of CD34 and glycophorin. Effects on viability were characterized by ViCell and flow cytometry. Results Treatment with a concentration range of 5-azacytidine increased the rate of red blood cell differentiation as measured by daily changes in CD34 and glycophorin and hemoglobinization. Quantitative ELISA demonstrated that HbF expression increased two-fold. In contrast, LSD1 inhibition reduced both the rate of proliferation and differentiation of erythroid progenitors. Consistent with impaired differentiation, both beta globin transcription and HbA expression were reduced by up to 84% (qRT-PCR) and 65% (quantitative ELISA), respectively. No increase in gamma globin transcription or HbF expression was observed in response to LSD1 inhibition. Control cultures differentiated as expected: after 14 days of treatment the majority of vehicle-, lenalidomide- or pomalidomide-treated cells were glycophorin-positive and enucleation was readily apparent. Both lenalidomide and pomalidomide treatment induced a two-fold increase in HbF expression, as previously reported. Conclusions Although both LSD1 and DNMT1 are reported to be components of the DRED complex and are proposed to be jointly responsible for epigenetically modifying the gamma globin promoter to silence HbF expression, inhibition of the two proteins had different outcomes on HbF expression. DNMT1 inhibition upregulated HbF expression to a similar extent as pomalidomide (currently in Phase 1 clinical trials for HbF induction), whereas LSD1 inhibition impaired erythroid differentiation and hemoglobinization. These results suggest that the mechanism of gamma globin silencing and the proposed role of the DRED complex require further evaluation. Furthermore, this work also suggests that LSD1 inhibition is not a therapeutic strategy for HbF induction in patients with sickle cell disease or beta thalassemia. Disclosures: Arvedson: Amgen: Employment. Tran:Amgen: Employment. Ross:Amgen: Employment. Yoder:Amgen: Employment. Hertz:Amgen: Employment. Hale:Amgen: Employment. Eschelbach:Amgen: Employment. Dineen:Amgen: Employment. Matyas:Amgen: Employment. Hartley:Amgen: Employment. Morgenstern:Amgen: Employment. Winters:Amgen: Employment. Cindy:Amgen: Employment. Molineux:Amgen: Employment. Coxon:Amgen: Employment.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1853-1863 ◽  
Author(s):  
DL Gumucio ◽  
KL Rood ◽  
KL Blanchard-McQuate ◽  
TA Gray ◽  
A Saulino ◽  
...  

Abstract We have analyzed the binding of Sp1, a ubiquitously expressed transactivator, to the promoter region of the gamma genes. Low-affinity Sp1 sites were found at -50 and -200. A high-affinity site was detected at -140, over the CACCC sequence. To analyze the function of these sites, Drosophila SL-2 cells, which lack Sp1, were cotransfected with an Sp1 expression plasmid and gamma globin promoter-CAT constructs. In these assays, the gamma promoter was significantly stronger in the presence than in the absence of Sp1. Thus, the three Sp1 sites in the gamma promoter allow binding as well as transactivation of the promoter. The majority of this transactivation was due to the strong binding site at -140 because introduction of a point mutation at -144 (CACCC----AACCC) reduced Sp1-dependent promoter strength by 57%. Analysis of the -200 region suggested that in the wild-type promoter, Sp1 binding at this site contributes little to promoter strength. However, a point mutation (-198 T----C) associated with hereditary persistence of fetal hemoglobin (HPFH) dramatically increased the affinity of this site for Sp1 and significantly increased Sp1 dependent promoter strength in SL-2 cells. Three other point mutations associated with HPFH did not significantly affect the interaction of Sp1 with the - 200 region.


1988 ◽  
Vol 8 (12) ◽  
pp. 5310-5322 ◽  
Author(s):  
D L Gumucio ◽  
K L Rood ◽  
T A Gray ◽  
M F Riordan ◽  
C I Sartor ◽  
...  

The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1853-1863 ◽  
Author(s):  
DL Gumucio ◽  
KL Rood ◽  
KL Blanchard-McQuate ◽  
TA Gray ◽  
A Saulino ◽  
...  

We have analyzed the binding of Sp1, a ubiquitously expressed transactivator, to the promoter region of the gamma genes. Low-affinity Sp1 sites were found at -50 and -200. A high-affinity site was detected at -140, over the CACCC sequence. To analyze the function of these sites, Drosophila SL-2 cells, which lack Sp1, were cotransfected with an Sp1 expression plasmid and gamma globin promoter-CAT constructs. In these assays, the gamma promoter was significantly stronger in the presence than in the absence of Sp1. Thus, the three Sp1 sites in the gamma promoter allow binding as well as transactivation of the promoter. The majority of this transactivation was due to the strong binding site at -140 because introduction of a point mutation at -144 (CACCC----AACCC) reduced Sp1-dependent promoter strength by 57%. Analysis of the -200 region suggested that in the wild-type promoter, Sp1 binding at this site contributes little to promoter strength. However, a point mutation (-198 T----C) associated with hereditary persistence of fetal hemoglobin (HPFH) dramatically increased the affinity of this site for Sp1 and significantly increased Sp1 dependent promoter strength in SL-2 cells. Three other point mutations associated with HPFH did not significantly affect the interaction of Sp1 with the - 200 region.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 815-817
Author(s):  
S Ottolenghi ◽  
S Nicolis ◽  
R Taramelli ◽  
N Malgaretti ◽  
R Mantovani ◽  
...  

A survey of hemoglobinopathies in Northern Sardinia allowed the identification of two subjects heterozygous for a new type of G gamma hereditary persistence of fetal hemoglobin (HPFH). The G gamma-globin gene from the HPFH chromosome shows the presence of a T----C substitution 175 nucleotides upstream of the CAP site, adding a new example of single-point mutations occurring in the promoter region of the gamma-globin genes and linked to HPFH phenotypes. In this case the mutation affects the 3′ end nucleotide of a conserved octamer sequence known to be present in other regulatory elements of several genes.


1988 ◽  
Vol 8 (12) ◽  
pp. 5310-5322
Author(s):  
D L Gumucio ◽  
K L Rood ◽  
T A Gray ◽  
M F Riordan ◽  
C I Sartor ◽  
...  

The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2246-2246
Author(s):  
Nikoletta Psatha ◽  
Afrodite Georgakopoulou ◽  
Chang Li ◽  
Pavel Sova ◽  
Hongjie Wang ◽  
...  

Despite the significant advances in developing novel therapies for hemoglobinopathies, developing a universal and robust therapeutic approach, able to achieve an event-free result in all β0/β0 thalassemic and sickle cell patients is a work in progress. It is known that increase of Fetal hemoglobin (HbF) can lead to an ameliorated clinical picture up to transfusion independency. Inactivation via genome editing of γ-globin suppressors or introduction of Hereditary Persistence of Fetal Hemoglobin (HPFH) mutations in the promoter of hemoglobin gamma (HBG) have been shown to significantly increase the endogenous HbF expression. Here we studied the effect in HbF reactivation by targeting the binding site of the two main HbF silencers, BCL11a and LRF and how it compares to the well-established editing of the BCL11a erythroid enhancer. Furthermore, in order to achieve higher levels of fetal hemoglobin, we assayed the effect of all combinations of these cis and trans acting mutations. We first observed that all single knock outs had similar effects in HbF reactivation. Interestingly, by targeting both sites in the gamma globin promoter we observed a decrease in HbF induction compared to each single edit, suggesting a possible binding of a gamma globin activator in the in-between region. However, editing of the BCL11a erythroid enhancer and either of the two silencer binding sites yielded maximum levels of fetal hemoglobin, with pancellular HbF expression, both in vitro and in vivo following xeno-transplantation in NSGW mice. Collectively, our data suggest that the combination of two fetal globin reactivation mutations, one cis and one trans, have the potential to significantly increase HbF both totally and on per cell basis. This strategy has the potential to induce higher levels of HbF reactivation with a clinical benefit in patients with beta globin disorders. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3045-3052 ◽  
Author(s):  
Jianqiong Zhu ◽  
Kyung Chin ◽  
Wulin Aerbajinai ◽  
Cecelia Trainor ◽  
Peter Gao ◽  
...  

Abstract The β-hemoglobinopathies sickle cell disease and β-thalassemia are among the most common human genetic disorders worldwide. Hemoglobin A2 (HbA2, α2δ2) and fetal hemoglobin (HbF, α2γ2) both inhibit the polymerization of hemoglobin S, which results in erythrocyte sickling. Expression of erythroid Kruppel-like factor (EKLF) and GATA1 is critical for transitioning hemoglobin from HbF to hemoglobin A (HbA, α2β2) and HbA2. The lower levels of δ-globin expression compared with β-globin expression seen in adulthood are likely due to the absence of an EKLF-binding motif in the δ-globin proximal promoter. In an effort to up-regulate δ-globin to increase HbA2 expression, we created a series of EKLF-GATA1 fusion constructs composed of the transactivation domain of EKLF and the DNA-binding domain of GATA1, and then tested their effects on hemoglobin expression. EKLF-GATA1 fusion proteins activated δ-, γ-, and β-globin promoters in K562 cells, and significantly up-regulated δ- and γ-globin RNA transcript and protein expression in K562 and/or CD34+ cells. The binding of EKLF-GATA1 fusion proteins at the GATA1 consensus site in the δ-globin promoter was confirmed by chromatin immunoprecipitation assay. Our studies demonstrate that EKLF-GATA1 fusion proteins can enhance δ-globin expression through interaction with the δ-globin promoter, and may represent a new genetic therapeutic approach to β-hemoglobinopathies.  


Sign in / Sign up

Export Citation Format

Share Document