scholarly journals Sardinian G gamma-HPFH: a T----C substitution in a conserved "octamer" sequence in the G gamma-globin promoter

Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 815-817
Author(s):  
S Ottolenghi ◽  
S Nicolis ◽  
R Taramelli ◽  
N Malgaretti ◽  
R Mantovani ◽  
...  

A survey of hemoglobinopathies in Northern Sardinia allowed the identification of two subjects heterozygous for a new type of G gamma hereditary persistence of fetal hemoglobin (HPFH). The G gamma-globin gene from the HPFH chromosome shows the presence of a T----C substitution 175 nucleotides upstream of the CAP site, adding a new example of single-point mutations occurring in the promoter region of the gamma-globin genes and linked to HPFH phenotypes. In this case the mutation affects the 3′ end nucleotide of a conserved octamer sequence known to be present in other regulatory elements of several genes.

Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 815-817 ◽  
Author(s):  
S Ottolenghi ◽  
S Nicolis ◽  
R Taramelli ◽  
N Malgaretti ◽  
R Mantovani ◽  
...  

Abstract A survey of hemoglobinopathies in Northern Sardinia allowed the identification of two subjects heterozygous for a new type of G gamma hereditary persistence of fetal hemoglobin (HPFH). The G gamma-globin gene from the HPFH chromosome shows the presence of a T----C substitution 175 nucleotides upstream of the CAP site, adding a new example of single-point mutations occurring in the promoter region of the gamma-globin genes and linked to HPFH phenotypes. In this case the mutation affects the 3′ end nucleotide of a conserved octamer sequence known to be present in other regulatory elements of several genes.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2066-2066 ◽  
Author(s):  
Fernanda Marconi Roversi ◽  
Anderson Ferreira Cunha ◽  
Carolina Lanaro ◽  
Ana Flavia Brugnerotto ◽  
Maria Emília Favero ◽  
...  

Abstract Abstract 2066 Hereditary persistence of fetal hemoglobin (HPFH) is a condition that prevents hemoglobin switching and the consequent silencing of the gamma globin genes, resulting in continued hemoglobin (Hb) F synthesis in adults. Two types of HPFH are responsible for this phenotype: deletional HPFH – deletions in the end of the beta globin locus – and non-deletional HPFH (ndHPFH) – single point mutations in the proximal promoter of both gamma globin genes. Sickle cell anemia patients or beta-thalassemia patients that present HPFH show high levels of HbF that are associated with less severe clinical course in these diseases. The development of new therapies based on the reactivation of gamma globin expression may be important for the treatment of these patients. The Brazilian ndHPFH type is characterized as a C→G substitution in the A gamma globin promoter at position –195 and the molecular mechanism responsible for the reactivation of this gene in the Brazilian ndHPFH type remains unclear. In contrast to the British ndHPFH type (-198), where the mechanism responsible for the increase of HbF levels is mediated by the raising in the affinity for the Sp1 transcription factor (TF), the Brazilian ndHPFH mutation does not affect Sp1 binding. Thus, other TF may be involved in the reactivation of the A gamma globin gene in the Brazilian ndHPFH type. The aim of this study was to investigate the mechanism involved in the reactivation or repression of the A gamma globin gene in the Brazilian ndHPFH type and identify possible TF responsible for this phenotype. In vitro primary human erythroblast cultures, derived from human CD34+ hematopoietic cells from 4 Brazilian ndHPFH type subjects and 4 control subjects, were proliferated and differentiated into late stage erythroblasts. The nuclear extracts from predominantly basophilic and polychromatic erythroblasts were used to profile TF activity using Protein-DNA Array method. The analysis of the array densitometry identified a number of TF whose DNA binding activities were either enhanced or repressed in the Brazilian ndHPFH cultures. Among the TF analyzed, the NF-E1/YY1 and the PAX-1 were selected for this study. Since this assay requires a secondary method to confirm these results, nuclear extracts were used to conduct chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). ChIP was carried out using antibodies against NF-E1/YY1 and PAX-1 to quantify the binding to these TF to the –195 A gamma globin promoter region. EMSA was performed using probes with the same sequence spotted on the array membrane to analyze the activity of NF-E1/YY1 and PAX-1. Both methods confirmed and validated the previous array results. NF-E1/YY1 is a transcription factor that represses embryonic (epsilon) and fetal (gamma) globin genes. Protein-DNA array and EMSA showed a decreased binding of NF-E1/YY1 in Brazilian ndHPFH nuclear extracts and ChIP analysis revealed diminished NF-E1/YY1 occupancy at the –195 A gamma globin promoter region of Brazilian ndHPFH. The consensus binding site for NF-E1/YY1 is a CCAN motif that is observed between the –195 and –192 position in the A gamma globin promoter region. The C→G substitution at –195 position may disrupt this DNA binding site, cause decreased NF-E1/YY1 interaction and probably allows the binding of PAX-1, a transcriptional activator with a paired box DNA-binding domain that has as a DNA binding core motif, the sequence TTCCGC. This sequence, located between the –199 and –194 position in the A gamma globin promoter, is only presente in the Brazilian type of ndHPFH. Our protein-DNA array and EMSA results showed an increased binding of PAX-1 in the Brazilian ndHPFH nuclear extracts and quantitative ChIP analysis with anti-PAX-1 antibody showed that PAX-1 binds to the –195 A gamma globin promoter region only in the presence of this C→G substitution. These results suggest that the –195 site (C→G) in the A gamma globin promoter region may decrease NF-E1/YY1 binding and increase PAX-1 binding in this DNA region, probably resulting in the reactivation of the A gamma globin gene. The increase in the HbF levels in the Brazilian ndHPFH occurs differently from the British ndHPFH type and represents a novel mechanism of A gamma globin reactivation. Such findings may lead to the development of future therapeutic strategies for HbF induction in the treatment of other hemoglobinopathies. Support by FAPESP and CNPq. Disclosures: No relevant conflicts of interest to declare.


1988 ◽  
Vol 8 (12) ◽  
pp. 5310-5322 ◽  
Author(s):  
D L Gumucio ◽  
K L Rood ◽  
T A Gray ◽  
M F Riordan ◽  
C I Sartor ◽  
...  

The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 492-492
Author(s):  
Kenneth R Peterson ◽  
Halyna Fedosyuk ◽  
Flavia C Costa

Abstract Hereditary persistence of fetal hemoglobin (HPFH) is a result of mutations that prevent the silencing of the g-globin genes during the adult stage of definitive erythropoiesis. Two types of HPFH are recognized, deletional HPFH and non-deletional HPFH. Mutations in the later class have been identified in the proximal promoters of the Ag- and Gg-globin genes. Individuals homozygous for sickle cell disease or certain b-thalassemia mutations, that have in addition a HPFH mutation, do not suffer the deleterious effects of these diseases. These subjects provide the natural evidence supporting the clinical effort to reactivate fetal hemoglobin as the major treatment for SCD and b-thalassemias. Thus, understanding the molecular mechanisms regulating the g-globin genes is essential for identification of points of therapeutic intervention. Although the number of point mutations causing HPFH has grown over the years, the biochemical mechanisms affected by these alterations remains elusive. In addition, it is unlikely that all potential mutations have been identified in humans. A complete catalog of all potential HPFH point mutations, coupled with knowledge of the transcriptional processes affected by them will be an invaluable step towards effectively treating these diseases. We recently identified a novel T>A HPFH mutation in a GATA site at position -566 of the Ag-globin promoter, the most distal in the promoter to date, that affects binding of a GATA-1-FOG-1-Mi2 repressor complex. Since this study utilized mutated human b-globin locus yeast artificial chromosome (b-YAC) transgenic mice, where a second copy of the Ag-globin gene was introduced near the locus control region, we produced b-YAC transgenic mice containing the -566 mutation at the normally located Ag-globin gene. These mice display a mild HPFH phenotype, an approximately 3% increase in g-globin gene expression, compared to wild-type b-YAC mice. Chromatin immunoprecipitation (ChIP) studies demonstrated that this mutation prevents GATA-1 binding when g-globin is repressed in post-conception day 18 (E18) fetal liver, whereas recruitment was observed in wild-type b-YAC transgenic samples from the same developmental stage. These data are consistent with the presence of a GATA-1-mediated repressor complex at this GATA site when g-globin is not expressed. GATA-1-mediated repression may be a general mechanism of g-globin silencing. To begin testing this hypothesis, we utilized previously generated Ag-globin -117 G>A Greek HPFH b-YAC transgenic mice, which show a 5–8% increase in g-globin synthesis in adult erythropoiesis. Published data suggested that this mutation affects nearby GATA-1 binding. Our ChIP data confirmed these results, however the GATA-1 multi-protein complex that is affected may differ from that recruited to the -566 GATA binding site. Finally, we have developed a cell-based selection that is being used to identify a comprehensive set of Ag-globin HPFH promoter mutations. Chemical inducer of dimerization (CID)-dependent Ag-globin promoter-eGFP b-YAC bone marrow cells were derived from transgenic mice and mutagenized with N-ethyl, N-nitrosourea (ENU). These cells are normally GFP−; treatment with g-globin-inducers or the presence of the -117 Greek HPFH mutation results in GFP+ cells. GFP+ cells were collected by FACS and individual cell clones expanded so that genomic DNA could be isolated. Promoter proximal regions were amplified by four PCR primer sets and subjected to heteroduplex analysis with the corresponding wild-type Ag-globin promoter PCR products as the control amplicons. Twenty three heteroduplexes have been detected among 158 mutant clones screened. Most are clustered in the proximal promoter. These data suggest that we have produced HPFH mutations, likely consisting of those known in human populations, as well as novel sites that affect repressor binding or enhance recruitment of transcriptional activators.


1988 ◽  
Vol 8 (12) ◽  
pp. 5310-5322
Author(s):  
D L Gumucio ◽  
K L Rood ◽  
T A Gray ◽  
M F Riordan ◽  
C I Sartor ◽  
...  

The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation.


1988 ◽  
Vol 8 (2) ◽  
pp. 713-721 ◽  
Author(s):  
M W Rixon ◽  
R E Gelinas

Single base substitutions have been identified in the promoter regions of A gamma-globin genes from individuals with certain types of nondeletion A gamma hereditary persistence of fetal hemoglobin (HPFH). The presence of these mutations is closely associated with the A gamma HPFH phenotype, but proof that they are the nondeletion HPFH determinants is lacking. To test directly whether these base substitutions can result in an increase in A gamma-globin gene transcription, we studied cosmid clones containing the G gamma- through beta-globin gene regions from individuals with Greek-type (G-to-A base substitution at -117) and Chinese-type (C-to-T base substitution at -196) A gamma HPFH in a transient expression assay. When tested as part of a cosmid clone, the Greek HPFH A gamma-globin gene consistently produced about 1.4 times as much RNA as the wild-type A gamma-globin gene when standardized against RNA transcribed from the G gamma genes in cis. The relative strengths of the normal and HPFH A gamma-globin gene promoters were also compared in transient expression assays with plasmids containing the A gamma-globin genes. Pseudo-wild-type A gamma-globin genes containing a short, transcriptionally neutral deletion were used so that two A gamma-globin genes that differed in their promoter sequences could be compared in the same transfection. The plasmid transient expression results indicated a 1.3- to 1.4-fold increase in steady-state RNA levels from the Greek-type A gamma HPFH promoter compared with the wild-type A gamma promoter, while no difference was documented between the Chinese-type A gamma HPFH promoter and the wild-type A gamma promoter.


Blood ◽  
1990 ◽  
Vol 75 (2) ◽  
pp. 499-504 ◽  
Author(s):  
CA Stolle ◽  
LA Penny ◽  
S Ivory ◽  
BG Forget ◽  
EJ Jr Benz

Abstract The gamma-globin genes from a patient homozygous for a deletion form of hereditary persistence of fetal hemoglobin (HPFH-1) have been cloned and sequenced. The DNA sequence of the patient's gamma-globin genes corresponds to a previously identified sequence framework (chromosome A) with the exception of 10 base changes. Seven of these base changes can be attributed to normal allelic variation generated by small gene conversion events. The remaining three base changes are present in a 0.76 kb HindIII fragment containing a putative enhancer located 3′ to the A gamma-globin gene. The same three base changes have also been described in the Seattle variant of nondeletion HPFH. We have analyzed 16 alleles from non-HPFH individuals and five alleles from individuals with nondeletion or deletion HPFH for the presence of these base changes by polymerase chain reaction amplification of cloned or chromosomal DNA and hybridization to allele-specific oligonucleotide probes. Although these base changes were found in an individual with HPFH-2, they were not found in the DNA from two patients with nondeletion HPFH. More importantly, all three base changes were detected in DNA from five non-HPFH individuals and appear to be common in blacks. We conclude that these base changes do not correlate with an HPFH phenotype and that the significant mutation in HPFH-1 is the deletion of over 100 kb of genomic DNA.


Blood ◽  
2019 ◽  
Vol 133 (8) ◽  
pp. 852-856 ◽  
Author(s):  
Gabriella E. Martyn ◽  
Beeke Wienert ◽  
Ryo Kurita ◽  
Yukio Nakamura ◽  
Kate G. R. Quinlan ◽  
...  

Abstract β-hemoglobinopathies, such as sickle cell disease and β-thalassemia, result from mutations in the adult β-globin gene. Reactivating the developmentally silenced fetal γ-globin gene elevates fetal hemoglobin levels and ameliorates symptoms of β-hemoglobinopathies. The continued expression of fetal γ-globin into adulthood occurs naturally in a genetic condition termed hereditary persistence of fetal hemoglobin (HPFH). Point mutations in the fetal γ-globin proximal promoter can cause HPFH. The −113A>G HPFH mutation falls within the −115 cluster of HPFH mutations, a binding site for the fetal globin repressor BCL11A. We demonstrate that the −113A>G HPFH mutation, unlike other mutations in the cluster, does not disrupt BCL11A binding but rather creates a de novo binding site for the transcriptional activator GATA1. Introduction of the −113A>G HPFH mutation into erythroid cells using the clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) system increases GATA1 binding and elevates fetal globin levels. These results reveal the mechanism by which the −113A>G HPFH mutation elevates fetal globin and demonstrate the sensitivity of the fetal globin promoter to point mutations that often disrupt repressor binding sites but here create a de novo site for an erythroid activator.


Blood ◽  
1986 ◽  
Vol 68 (3) ◽  
pp. 646-651 ◽  
Author(s):  
G Saglio ◽  
C Camaschella ◽  
A Serra ◽  
T Bertero ◽  
G Rege Cambrin ◽  
...  

Abstract We report a new type of deletion of the beta globin gene cluster in the Italian population that confers a phenotype of hereditary persistence of fetal hemoglobin (HPFH) to the carriers. This deletion begins approximately 5 kilobases (kb) 5′ to the delta globin gene and ends approximately 30 kb 3′ to the beta globin gene, in close proximity to the 3′ end of an Indian HPFH. In all four previously described HPFH, a repetitive Alu I region 5′ to the delta globin gene is largely or completely deleted; the 5′ end of the new HPFH is consistent with this common feature. In addition, the finding that Italian and Indian HPFHs, as reported for other groups of deletions, have very close 3′ ends, strengthens the idea that common mechanisms may operate in generating these deletions. Finally, we show that, in spite of similar 5′ breakpoints, the deletion of Spanish delta beta degrees-thalassemia is at least 8 kb longer than that of Negro HPFH type I, thus ruling out the hypothesis that the overall extent of the deletion might influence the level of gamma globin chain synthesis.


1988 ◽  
Vol 8 (2) ◽  
pp. 713-721
Author(s):  
M W Rixon ◽  
R E Gelinas

Single base substitutions have been identified in the promoter regions of A gamma-globin genes from individuals with certain types of nondeletion A gamma hereditary persistence of fetal hemoglobin (HPFH). The presence of these mutations is closely associated with the A gamma HPFH phenotype, but proof that they are the nondeletion HPFH determinants is lacking. To test directly whether these base substitutions can result in an increase in A gamma-globin gene transcription, we studied cosmid clones containing the G gamma- through beta-globin gene regions from individuals with Greek-type (G-to-A base substitution at -117) and Chinese-type (C-to-T base substitution at -196) A gamma HPFH in a transient expression assay. When tested as part of a cosmid clone, the Greek HPFH A gamma-globin gene consistently produced about 1.4 times as much RNA as the wild-type A gamma-globin gene when standardized against RNA transcribed from the G gamma genes in cis. The relative strengths of the normal and HPFH A gamma-globin gene promoters were also compared in transient expression assays with plasmids containing the A gamma-globin genes. Pseudo-wild-type A gamma-globin genes containing a short, transcriptionally neutral deletion were used so that two A gamma-globin genes that differed in their promoter sequences could be compared in the same transfection. The plasmid transient expression results indicated a 1.3- to 1.4-fold increase in steady-state RNA levels from the Greek-type A gamma HPFH promoter compared with the wild-type A gamma promoter, while no difference was documented between the Chinese-type A gamma HPFH promoter and the wild-type A gamma promoter.


Sign in / Sign up

Export Citation Format

Share Document