scholarly journals Evaluation and fitting of a numerical model for reinforced concrete thin walls through experimental results of monotonic and cyclic loading tests

2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Roger Ortega ◽  
Carlos Naranjo ◽  
Pedro Torres ◽  
Carlos Madera ◽  
Johannio Marulanda ◽  
...  
2012 ◽  
Vol 06 (03) ◽  
pp. 1250015 ◽  
Author(s):  
ANAT RUANGRASSAMEE ◽  
ARCHAWIN SAWAROJ

When reinforced-concrete columns are subjected to lateral cyclic loading, columns usually suffer failures at plastic hinges. If the buckling of longitudinal reinforcements at plastic hinges can be prevented or delayed, columns are expected to carry gravity loads at a higher ductility level. In this study, the rebar-restraining collar (RRC) was developed to improve the post-buckling behavior of longitudinal reinforcements. The behavior was investigated under monotonic loading tests of reinforcing bars with the RRCs and the cyclic loading tests of two reinforced-concrete bridge columns with and without RRCs. From the monotonic loading test, it was found that the RRCs significantly improved the post-yielding behavior of longitudinal reinforcing bars. The ductility and energy dissipation of longitudinal reinforcing bars with RRCs was significantly higher than that of the bare bar. Then, cyclic loading tests of two reinforced-concrete bridge columns were conducted. The cross section of columns was 0.4 m × 0.4 m, and the effective height was 2.15 m. The ratio of longitudinal reinforcing bars was 0.0123, and the volumetric ratio of transverse reinforcement was 0.00424. The column with RRCs did not have buckling of longitudinal reinforcements and had the ductility enhancement of about 17%, comparing to the column without RRCs. One evident benefit of using the RRCs is to control damage at plastic hinges of columns. Hence, the repair cost of columns after an earthquake can be reduced.


2006 ◽  
Vol 33 (2) ◽  
pp. 111-125 ◽  
Author(s):  
Abolghasem Nezamian ◽  
Riadh Al-Mahaidi ◽  
Paul Grundy

Investigation of the load transfer of concrete plugs to tubular steel piles subjected to tension and compression and cyclic loading has been conducted at Monash University over the past 3 years. The work presented in this paper reports on the results of the combination of pull-out, push-out, and cyclic loading tests carried out on 15 steel tube specimens filled partially with reinforced concrete with variable lengths of embedment. The pull-out force was applied through steel reinforcing bars embedded in the concrete plug, and push-out forces were applied through a thick top circular plate on the top of the concrete plug. Test results included the cyclic loading, ultimate pull-out and push-out forces, slip of concrete plugs, and longitudinal and hoop strains along the piles for some specimens. The tests clearly showed that average bond strength significantly exceeds expectations and is higher than the results of previous investigations using plugs without reinforcement. The test results also indicated that cyclic loading tests reduced the bond strength due to the accumulation of damage to the plug–pile interface. The push-out and pull-out tests conducted under symmetric cyclic loading demonstrated that slip between the concrete plug and the steel tube increased with repeated loading, and the rate of slip growth increased with an increase in the peak load.Key words: tubular steel pile, reinforced concrete plug, bond, cyclic loading.


2014 ◽  
Vol 1079-1080 ◽  
pp. 22-27
Author(s):  
Shao Wu Zhang ◽  
Geng Biao Zhang ◽  
Ying Chuan Chen

In order to verify the feasibility of a new overallseismic reinforcement method of the framework. Firstly,carried low cyclic loading tests on reinforcedconcrete framework, then reinforced the framework with a new method, and repeatthe low cyclic loading tests , finally, compared and analyzed the data from twotests. Compared with the original framework, the shape of the hysteresis curveis more full and the skeleton curve of the parallel period is longer andthe ductility factor increased by 35% and the bearing capacity increased by 40%.The results show that reinforcement framework has better energy dissipationcapacity, ductility and transgender capacity.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Hui Wang ◽  
Jian-jun Chang ◽  
Shi-qin He ◽  
Qing-lei Zhang

Low-cyclic loading tests were carried on brick walls bonded with mud reinforced by three methods: packing belts, one-side steel-meshed cement mortar, and double-side steel-meshed cement mortar. The failure modes, hysteresis curves of the load-displacement, skeleton curves, and ductility were obtained. The results showed that the bearing capacity of the brick walls bonded with mud reinforced by the abovementioned three methods had been increased to 1.4, 1.7, and 2.2 times as much as that of the unreinforced brick walls, respectively, and the ductility of the reinforced brick walls had been increased to 4.7, 2.1 and 2.2 times, respectively. The integrity and ductility of the reinforced brick walls were effectively improved in different degrees. The experimental results provided specific seismic strengthening techniques for the farmhouses built with brick walls bonded with mud.


Sign in / Sign up

Export Citation Format

Share Document