scholarly journals SPATIAL VARIABILITY OF THE SATURATED HYDRAULIC CONDUCTIVITY OF SOIL IN COCOA FARMING IN RECÔNCAVO BAIANO

2019 ◽  
Vol 32 (3) ◽  
pp. 786-794
Author(s):  
GERLANGE SOARES DA SILVA ◽  
JUCICLÉIA SOARES DA SILVA ◽  
FRANCISCO ADRIANO DE CARVALHO PEREIRA ◽  
RODRIGO ALMEIDA SANTANA ◽  
RAFAEL SILVA FIRMO ◽  
...  

ABSTRACT Irrigated cocoa cultivation opened the way for production in Coastal Tablelands soils. However, in this region, the cohesive layer formed near the surface can be a limiting factor for production. The knowledge of physical soil water attributes enables the efficient irrigation management of cohesive soils. This study characterized and modeled the spatial variability of saturated hydraulic conductivity (K0) in a Distrocoeso Oxisoil of the Recôncavo Baiano Coastal Tablelands. The soil sampling was performed as undeformed structures from 50 spaced points in an 8.0 to 8.0 m area, at three different depths in the experimental area of the Federal University of Bahia Recôncavo in the Cruz das Almas-BA cultivated with cocoa (‘CCN 51’). In the laboratory, K0 was determined by permeameter method constant load, and the pore size distribution was determined using the voltage table and the soil density (Ds). Data were analyzed using descriptive statistics and geostatistics. On average, the K0 values were 40.41, 26.49, and 37.82 mm-1 h-1 at the depths from 0.0-0.15 m, 0.15-0.30, and 0.30-0.45 m. The Gaussian model was the best fit to the K0 data set. For soil class, the K0 showed a strong spatial dependence due to their relationship with the physical properties of the soil, its use, and handling. Since an important attribute for the delimitation of homogeneous areas for specific site management purposes as well be considered.

2021 ◽  
Author(s):  
Surya Gupta ◽  
Peter Lehmann ◽  
Andreas Papritz ◽  
Tomislav Hengl ◽  
Sara Bonetti ◽  
...  

<p>Saturated soil hydraulic conductivity (Ksat) is a key parameter in many hydrological and climatic modeling applications, as it controls the partitioning between precipitation, infiltration and runoff. Values of Ksat are often deduced from Pedotransfer Functions (PTFs) using maps of soil attributes. To circumvent inherent limitations of present PTFs (heavy reliance of arable land measurements, ignoring soil structure, and geographic bias to temperate regions), we propose a new global Ksat map at 1–km resolution by harnessing technological advances in machine learning and availability of remotely sensed surrogate information (terrain, climate and vegetation). We compiled a comprehensive Ksat data set with 13,258 data geo-referenced points from literature and other sources. The data were standardized and quality-checked in order to provide a global database of soil saturated hydraulic conductivity (SoilKsatDB). The SoilKsatDB was then applied to develop a Covariate-based GeoTransfer Function (CoGTF) model for predicting spatially distributed Ksat values using remotely sensed information on various environmental covariates. The model accuracy assessment based on spatial cross-validation shows a concordance correlation coefficient (CCC) of 0.16 and a root meansquare error (RMSE) of 1.18 for log10 Ksat values in cm/day (CCC=0.79 and RMSE=0.72 for non spatial cross-validation). The generated maps of Ksat represent spatial patterns of soil formation processes more distinctly than previous global maps of Ksat based on soil texture information and bulk density. The validation indicates that Ksat could be modeled without bias using CoGTFs that harness spatially distributed surface and climate attributes, compared to soil information based PTFs. The relatively poor performance of all models in the validation (low CCC and high RMSE) highlights the need for the collection of additional Ksat values to train the model for regions with sparse data.</p>


Geoderma ◽  
2015 ◽  
Vol 243-244 ◽  
pp. 58-68 ◽  
Author(s):  
Athanasios (Thanos) N. Papanicolaou ◽  
Mohamed Elhakeem ◽  
Christopher G. Wilson ◽  
C. Lee Burras ◽  
Larry T. West ◽  
...  

Irriga ◽  
2004 ◽  
Vol 9 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Zigomar Menezes de Souza ◽  
José Marques Júnior ◽  
Gener Tadeu Pereira ◽  
Luis Fernando Moreira

INFLUÊNCIA DA PEDOFORMA NA VARIABILIDADE ESPACIAL DE ALGUNS ATRIBUTOS FÍSICOS E HÍDRICOS DE UM LATOSSOLO SOB CULTIVO DE CANA-DE-AÇÚCAR[1]   Zigomar Menezes de Souza;  José Marques Júnior; Gener Tadeu Pereira; Luis Fernando MoreiraDepartamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP,  [email protected]  1 RESUMO  O presente trabalho teve como objetivo avaliar a variabilidade espacial da condutividade hidráulica do solo saturado, resistência do solo à penetração e teor de água de um Latossolo Vermelho eutroférrico sob cultivo de cana de açúcar, utilizando-se métodos da estatística clássica, análises geoestatística e técnicas de interpolação de dados, com a finalidade de observar padrões de ocorrência destes atributos na paisagem. Foram feitas amostragens de solo nas profundidades de 0,0-0,2 m e 0,2-0,4 m, nos pontos de cruzamento de uma malha, com intervalos regulares de 10 m, perfazendo um total de 100 pontos. Os valores do coeficiente de variação para os dados apresentaram-se desde baixos (teor de água do solo), alto (resistência do solo à penetração) e muito alto (condutividade hidráulica do solo saturado). Observou-se a ocorrência de dependência espacial de todas as variáveis estudadas, com os maiores alcances na profundidade de 0,2-0,4 m. As variáveis condutividade hidráulica do solo saturado e teor de água do solo apresentaram grau moderado de dependência espacial, a resistência à penetração teve forte grau de dependência espacial. Pequenas variações nas formas do relevo condicionam variabilidade diferenciada para atributos físicos do solo.  UNITERMOS: geoestatística, krigagem, condutividade hidráulica do solo saturado, resistência do solo à penetração.   SOUZA, Z. M. de; MARQUES JUNIOR, J.; PEREIRA, G. T.; MOREIRA, L. F. INFLUENCE OF THE LANDSCAPE IN THE SPATIAL VARIABILITY OF THE HYDRAULIC CONDUCTIVITY, PENETRATION RESISTANCE AND SOIL MOISTURE IN THE SUGAR CANE CROP  2 ABSTRACT     The objective of this work was to evaluate spatial variability of saturated hydraulic conductivity, soil resistance to penetration and soil moisture in an area where sugarcane was planted under conventional tillage, using classic statistical methods, geostatistical analyses and data interpolation techniques, to assess occurrence patterns of these characteristics in the landscape. Soil was sampled depths of 0.0-0.2 m and 0.2-0.4 m, collected in intersections of a regular grid, with intervals of 10 m, in a total of 100 sampling points. Variation Coefficient (VC) were low for soil moisture, high soil for penetration resistance and very high for saturated hydraulic conductivity. All variables showed spatial dependence and the largest ones for depth of 0.2-0.4 m. Saturated hydraulic conductivity and soil moisture presented moderate spatial dependence, soil penetration resistance showed strong spatial dependence. Small variations in the landscape forms can define different spatial variability found for the physical characteristics of the soil.  KEYWORDS: geostatistics, kriging, saturated hydraulic conductivity, soil penetration resistance. 


Sign in / Sign up

Export Citation Format

Share Document