scholarly journals INFLUÊNCIA DA PEDOFORMA NA VARIABILIDADE ESPACIAL DE ALGUNS ATRIBUTOS FÍSICOS E HÍDRICOS DE UM LATOSSOLO SOB CULTIVO DE CANA-DE-AÇÚCAR

Irriga ◽  
2004 ◽  
Vol 9 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Zigomar Menezes de Souza ◽  
José Marques Júnior ◽  
Gener Tadeu Pereira ◽  
Luis Fernando Moreira

INFLUÊNCIA DA PEDOFORMA NA VARIABILIDADE ESPACIAL DE ALGUNS ATRIBUTOS FÍSICOS E HÍDRICOS DE UM LATOSSOLO SOB CULTIVO DE CANA-DE-AÇÚCAR[1]   Zigomar Menezes de Souza;  José Marques Júnior; Gener Tadeu Pereira; Luis Fernando MoreiraDepartamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP,  [email protected]  1 RESUMO  O presente trabalho teve como objetivo avaliar a variabilidade espacial da condutividade hidráulica do solo saturado, resistência do solo à penetração e teor de água de um Latossolo Vermelho eutroférrico sob cultivo de cana de açúcar, utilizando-se métodos da estatística clássica, análises geoestatística e técnicas de interpolação de dados, com a finalidade de observar padrões de ocorrência destes atributos na paisagem. Foram feitas amostragens de solo nas profundidades de 0,0-0,2 m e 0,2-0,4 m, nos pontos de cruzamento de uma malha, com intervalos regulares de 10 m, perfazendo um total de 100 pontos. Os valores do coeficiente de variação para os dados apresentaram-se desde baixos (teor de água do solo), alto (resistência do solo à penetração) e muito alto (condutividade hidráulica do solo saturado). Observou-se a ocorrência de dependência espacial de todas as variáveis estudadas, com os maiores alcances na profundidade de 0,2-0,4 m. As variáveis condutividade hidráulica do solo saturado e teor de água do solo apresentaram grau moderado de dependência espacial, a resistência à penetração teve forte grau de dependência espacial. Pequenas variações nas formas do relevo condicionam variabilidade diferenciada para atributos físicos do solo.  UNITERMOS: geoestatística, krigagem, condutividade hidráulica do solo saturado, resistência do solo à penetração.   SOUZA, Z. M. de; MARQUES JUNIOR, J.; PEREIRA, G. T.; MOREIRA, L. F. INFLUENCE OF THE LANDSCAPE IN THE SPATIAL VARIABILITY OF THE HYDRAULIC CONDUCTIVITY, PENETRATION RESISTANCE AND SOIL MOISTURE IN THE SUGAR CANE CROP  2 ABSTRACT     The objective of this work was to evaluate spatial variability of saturated hydraulic conductivity, soil resistance to penetration and soil moisture in an area where sugarcane was planted under conventional tillage, using classic statistical methods, geostatistical analyses and data interpolation techniques, to assess occurrence patterns of these characteristics in the landscape. Soil was sampled depths of 0.0-0.2 m and 0.2-0.4 m, collected in intersections of a regular grid, with intervals of 10 m, in a total of 100 sampling points. Variation Coefficient (VC) were low for soil moisture, high soil for penetration resistance and very high for saturated hydraulic conductivity. All variables showed spatial dependence and the largest ones for depth of 0.2-0.4 m. Saturated hydraulic conductivity and soil moisture presented moderate spatial dependence, soil penetration resistance showed strong spatial dependence. Small variations in the landscape forms can define different spatial variability found for the physical characteristics of the soil.  KEYWORDS: geostatistics, kriging, saturated hydraulic conductivity, soil penetration resistance. 

2008 ◽  
Vol 88 (5) ◽  
pp. 849-857 ◽  
Author(s):  
R A Tarpey ◽  
M F Jurgensen ◽  
B J Palik ◽  
R K Kolka

Periodic silvicultural thinnings (23.0, 27.6, 32.1 m2 ha-1 residual basal area) in a red pine stand growing on a sandy soil in north-central Minnesota over a 57-yr period increased soil compaction as the intensity of the thinning treatment increased. Of the three different methods used to measure soil compaction (bulk density, penetration resistance, and saturated hydraulic conductivity), saturated hydraulic conductivity was the most sensitive, decreasing by 60% in the 23.0 m2 ha-1 basal area thinning treatment, as compared with the uncut control. Soil bulk density measurements were more variable, but generally increased with increased thinning intensity. Few differences in soil penetration resistance were found among the three thinning treatments. In contrast, no evidence of soil compaction was detected in a northern hardwoods stand growing on a rocky loam soil in north-central Wisconsin that had three thinning treatments (13.8, 17.2, 20.6 m2 ha-1 residual basal area), a two- stage shelterwood harvest, and a 20-cm-diameter limit cut over a 50-yr period. With the increased demand for forest products, fuel reduction operations in high fire-risk stands, and biomass removal for energy production, more information is needed on the impact of multiple stand entries on soil compaction, and if compaction occurs, whether it will affect long-term soil productivity. Key words: Soil physical properties, bulk density, soil penetration resistance, hydraulic conductivity


Author(s):  
Izabela de Lima Feitosa ◽  
Alexandre Martins Abdão dos Passos ◽  
Henrique Nery Cipriani ◽  
Marcelo Silva de Oliveira ◽  
Alaerto Luiz Marcolan ◽  
...  

Abstract: The objective of this work was to analyze the spatial variability of soil physical attributes in integrated production systems and its relationship with the growth and yield of a corn (Zea mays) crop intercropped with palisade grass (Urochloa brizantha). The experiment was carried out in an integrated crop-livestock (ICL) system and in an integrated crop-livestock-forestry (ICLF) system, in a Plinthic Hapludox. The ICLF system was managed in alleys between eucalyptus (Eucalyptus spp.) rows, spaced at 18, 30, and 42 m. Corn grain and forage yields were positively correlated with soil clay and moisture contents, whereas grain yield was negatively correlated with soil penetration resistance. The lowest corn plant heights and grain yields were observed near eucalyptus rows. The average values for soil penetration resistance were below 2.0 MPa. Spatial variability was verified for: corn plant height, grain yield, and agronomic efficiency; forage intercropping; and soil moisture and silt contents, as well as penetration resistance. Greater grain and biomass yields were obtained at a 42-m distance between tree rows. The obtained results are indicative that corn traits and soil physical attributes were only slightly associated. The spatial distribution of the eucalyptus rows influences the agronomic efficiency of the intercrop and soil moisture contents.


2013 ◽  
pp. 183-186
Author(s):  
Géza Tuba

he effect of reduced and conventional tillage systems on soil compaction and moisture content in two years with extreme weather conditions is introduced in this paper. The investigations were carried out in a long-term soil cultivation experiment set on a heavy textured meadow chernozem soil at the Karcag Research Institute. In 2010 the amount of precipitation during the vegetation period of winter wheat was 623.3 mm, 2.2 times higher than the 50-year average, while in 2011 this value was 188.7 mm giving only 65% of the average. The examinations were made after harvest on stubbles on 4 test plots in 5 replications in the case of each tillage system. Soil compaction was characterised by penetration resistance values, while the actual soil moisture contents were determined by gravimetry. The values of penetration resistance and soil moisture content of the cultivated soil layer were better in the case of reduced tillage under extreme precipitation conditions. It could be established that regular application of deep soil loosening is essential due to the formation of the unfavourable compact soil layer under 30 cm. Conventional tillage resulted in enhanced compaction under the depth of ploughing, the penetration resistance can reach the value of 4 MPa under wet, while even 8 MPa under dry soil status.


2016 ◽  
Vol 36 (3) ◽  
pp. 449-459 ◽  
Author(s):  
Wininton M. da Silva ◽  
Aloísio Bianchini ◽  
Cesar A. da Cunha

ABSTRACT This study aimed to describe the behavior of models for adjusting data of soil penetration resistance for variations in soil moisture and soil bulk density. The study was carried out in Lucas do Rio Verde, MT, Brazil in a typic dystrophic red-yellow Latosol (Oxisol) containing 0.366 kg kg−1 of clay. Soil penetration resistance measurements were conducted in the soil moistures of 0.33 kg kg−1, 0.28 kg kg−1, 0.25 kg kg−1 and 0.22 kg kg−1. Soil penetration resistance behavior due to variations in soil moisture and soil bulk density was assessed by estimating the soil resistance values by non-linear models. There was an increase of the soil penetration resistance values as soil was losing moisture. For the same edaphic condition studied, small differences in the data of soil bulk density affect differently the response of soil resistance as a function of moisture. Both soil bulk density and soil moisture are essential attributes to explain the variations in soil penetration resistance in the field. The good representation of the critical soil bulk density curve as a limiting compression indicator requires the proper choice of the restrictive soil resistance value for each crop.


2006 ◽  
Vol 63 (4) ◽  
pp. 341-350 ◽  
Author(s):  
Célia Regina Grego ◽  
Sidney Rosa Vieira ◽  
Aline Maria Antonio ◽  
Simone Cristina Della Rosa

Experiments in agriculture usually consider the topsoil properties to be uniform in space and, for this reason, often make inadequate use of the results. The objective of this study was to assess the variability for soil moisture content using geostatistical techniques. The experiment was carried out on a Rhodic Ferralsol (typic Haplorthox) in Campinas, SP, Brazil, in an area of 3.42 ha cultivated under the no tillage system, and the sampling was made in a grid of 102 points spaced 10 m x 20 m. Access tubes were inserted down to one meter at each evaluation point in order to measure soil moisture contents (cm³ cm-3) at depths of 30, 60 and 90 cm with a neutron moisture gauge. Samplings were made between the months of August and September of 2003 and in January 2004. The soil moisture content for each sampling date was analyzed using classical statistics in order to appropriately describe the central tendency and dispersion on the data and then using geostatistics to describe the spatial variability. The comparison between the spatial variability for different samplings was made examining scaled semivariograms. Water content was mapped using interpolated values with punctual kriging. The semivariograms showed that, at the 60 cm depth, soil water content had moderate spatial dependence with ranges between 90 and 110 m. However, no spatial dependence was found for 30 and 90 cm depths in 2003. Sampling density was insufficient for an adequate characterization of the spatial variability of soil moisture contents at the 30 and 90 cm depths.


Author(s):  
K. J. JIMENEZ ◽  
P. M. B. MENDES ◽  
A. A. A. MONTENEGRO ◽  
M. M. ROLIM ◽  
D. H. S. SOUZA ◽  
...  

1986 ◽  
Vol 66 (2) ◽  
pp. 249-259 ◽  
Author(s):  
G. D. BUCKLAND ◽  
D. B. HARKER ◽  
T. G. SOMMERFELDT

Saturated hydraulic conductivity (Ks) and drainable porosity (f) determined by different methods and for different depths were compared with those determined from the performance of drainage systems installed at two locations. These comparisons were made to determine which methods are suitable for use in subsurface drainage design. Auger hole and constant-head well permeameter Ks were 140 and 110%, respectively, of Ks determined from subsurface drains. Agreement of horizontal or vertical Ks, from in situ falling-head permeameters; to other methods was satisfactory providing sample numbers were large. Ks by Tempe cells was only 3–10% of drain Ks and in one instance was significantly lower than Ks determined by all other methods. At one site a profile-averaged value of f determined from the soil moisture characteristic curve (0–5 kPa) of semidisturbed cores agreed with that determined from drainage trials. At the other site, a satisfactory value of f was found only when the zone in which the water table fluctuated was considered. Results indicate that Ks determined by the auger hole and constant-head well permeameter methods, and f determined from the soil moisture characteristic curve of semidisturbed cores, are sufficiently reliable and practical for subsurface drainage design. Key words: Subsurface drainage, hydraulic conductivity, drainable porosity


Sign in / Sign up

Export Citation Format

Share Document