scholarly journals The discovery of new mineral species and type minerals from Brazil

2015 ◽  
Vol 45 (1) ◽  
pp. 143-158 ◽  
Author(s):  
Daniel Atencio

Minerals were seen merely as sources of chemicals: iron ore, copper ore, etc. However, minerals are not just chemicals associations, since they display crystal structures. These two features together provide properties that can be technologically useful. Even though a mineral occurs in very small amount, which does not allow its extraction, it can serve as a model for obtaining the synthetic analogue on an industrial scale. It is necessary that a new-mineral proposal be submitted for approval by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA) before publication. Only 65 valid mineral species were first described from Brazil, that is, the type minerals from Brazil. Nineteen of these were published between 1789 and 1959 (0.11 per year). From 1959, when the CNMMN (today CNMNC) - IMA was established, to 2000, 18 approved Brazilian mineral species remain valid (0.43 per year). However, the number of type minerals from Brazil approved in the last 15 years (2000 to 2014) was substantially increased: 28 (1.87 per year). This number is very small considering the wide range of Brazilian geological environments. The two first type species from Brazil, discovered in the 18th century, chrysoberyl and euclase, are important gemological minerals. Two other gem minerals, tourmaline-supergroup members, were published only in the 21st century: uvite and fluor-elbaite. Some type minerals from Brazil are very important technologically speaking. Some examples are menezesite, coutinhoite, lindbergite, pauloabibite, and waimirite-(Y).

2021 ◽  
Vol 106 (1) ◽  
pp. 150-153
Author(s):  
Frédéric Hatert ◽  
Stuart J. Mills ◽  
Frank C. Hawthorne ◽  
Mike S. Rumsey

Abstract The classification and nomenclature of mineral species is regulated by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMACNMNC). This mineral species classification is necessary for Earth Sciences, as minerals constitute most planetary and interstellar materials. Hazen (2019) has proposed a classification of minerals and other Earth and planetary materials according to “natural clustering.” Although this classification is complementary to the IMA-CNMNC mineral classification and is described as such, there are some unjustified criticisms and factual errors in the comparison of the two schemes. It is the intent of the present comment to (1) clarify the use of classification schemes for Earth and planetary materials, and (2) counter erroneous criticisms or statements about the current IMA-CNMNC system of approving proposals for new mineral species and classifications.


Author(s):  
Mario Luiz de Sá Carneiro Chaves ◽  
Antônio Wilson Romano ◽  
Luiz Alberto Dias Menezes Filho

Embora o potencial mineral do Brasil seja imenso e, por conseguinte, a possibilidade de encontro de novas espécies minerais nos empreendimentos minerários seja naturalmente alta, até 2010 somente 51 descobertas haviam sido verificadas no país. Entretanto, nos últimos sete anos, através de um projeto de Tese de Doutoramento realizado no Programa de Pós-Graduação em Geologia do IGC/UFMG, esta situação procurou ser mudada. Com ênfase em dois dos principais ambientes geológicos do Estado de Minas Gerais e adjacências, a Província Pegmatítica Oriental do Brasil e a Serra do Espinhaço, estudos foram conduzidos visando especificamente o encontro de novos minerais. Destacam-se os resultados extremamenete satisfatórios; nesses anos foram descobertos oito minerais, o que representa média de 1,3 mineral/ano, contrastando com os inexpressivos 0,2 mineral/ano verificados desde 1789 (ano em que o crisoberilo foi descrito). Os novos minerais são, incluindo seus códigos de identificação na International Mineralogical Association (IMA): carlosbarbosaíta [(UO2)2Nb2O6(OH)2.2H2O], IMA 2010-047; pauloabibita [NaNbO3], IMA 2012-090; cesarferreiraíta [Fe2+Fe3+2(AsO4)2(OH)2.8H2O], IMA 2012-099; correianevesita [Fe2+Mn2+2(PO4)2.3H2O], IMA 2013-007; almeidaíta [Pb(Mn,Y)Zn2(Ti,Fe3+)18O36(O,OH)2], IMA 2013-020; wilancookita [(Ba,K,Na)8(Ba,Li,[])6Be24P24O96.3H2O], IMA 2015-034; parisita-(La) [CaLa2(CO3)3F2], IMA 2016-031; e brandãoita [BeAl2(PO4)2(OH)2(H2O)4], IMA 2016-071a. Este foi o primeiro programa de pesquisa desenvolvido no país voltado especialmente para a descoberta de novos minerais, tendo alcançado pleno êxito.Palavras Chave: Novos minerais, Centro de Pesquisa Prof. Manoel Teixeira da Costa, (IGC-UFMG), BrasilAbstract:RECENT MINERALS DESCRIBED IN BRAZIL: PARTICIPATION OF THE CENTRO DE PESQUISA PROF. MANOEL TEIXEIRA DA COSTA - CPMTC, GEOSCIENCES INSTITUTE (UFMG). Although the mineral potential of Brazil is immense and, consequently, the possibility of finding new mineral species in mining projects is obviously high, until 2010 only 51 discoveries had been verified in this country. However, in the last seven years, through a PhD Thesis project carried at the Postgraduate in Geology Program of the IGC/UFMG, this situation has been modified. With emphasis on two of the main geological environments of Minas Gerais State and surrounding regions, the Eastern Brazil Pegmatite Province and the Espinhaço Mountain Range, studies were conducted specifically aimed at finding new minerals. The results are extremely satisfactory; in those years eight minerals were discovered, representing an average of 1.3 mineral/year, contrasting with the inexpressive 0.2 mineral/year verified since 1789 (year of chrysoberyl description). The new minerals are, including their identification codes in the International Mineralogical Association (IMA): carlosbarbosaite [(UO2)2Nb2O6(OH)2.2H2O], IMA 2010-047; pauloabibite [NaNbO3], IMA 2012-090; cesarferreiraita [Fe2+Fe3+2(AsO4)2(OH)2.8H2O], IMA 2012-099; correianevesite [Fe2+Mn2+2(PO4)2.3H2O], IMA 2013-007; almeidaite [Pb(Mn,Y)Zn2(Ti,Fe3+)18O36(O,OH)2], IMA 2013-020; wilancookite [(Ba,K,Na)8(Ba,Li,[])6Be24P24O96.3H2O], IMA 2015-034; parisite-(La) [CaLa2(CO3)3F2], IMA 2016-031; and brandãoite [BeAl2(PO4)2(OH)2(H2O)4], IMA 2016-071a. This was the first research program developed in the country focused especially on the discovery of new minerals, reaching full success.Keywords: New minerals, Prof. Manoel Teixeira da Costa Research Center (IGC-UFMG), Brazil. 


2014 ◽  
Vol 78 (3) ◽  
pp. 571-581 ◽  
Author(s):  
E. V. Galuskin ◽  
I. O. Galuskina ◽  
J. Kusz ◽  
T. Armbruster ◽  
K. M. Marzec ◽  
...  

AbstractThe new mineral species vapnikite, Ca3UO6, was found in larnite pyrometamorphic rocks of the Hatrurim Formation at Jabel Harmun in the Judean desert, Palestinian Autonomy, Israel. Vapnikite is an analogue of the synthetic ordered double-perovskite β-Ca3UO6 and is isostructural with the natural fluorperovskite – cryolite Na3AlF6. Vapnikite Ca3UO6 (P21/n, Z = 2, a = 5.739(1), b = 5.951(1), c = 8.312(1) Å, β = 90.4(1)°, V = 283.9(1) Å3) forms yellow-brown xenomorphic grains with a strong vitreous lustre. Small grains up to 20−30 µm in size are wedged between larnite, brownmillerite and ye’elimite. Vapnikite has irregular fracture, cleavage and parting were not observed. The calculated density is 5.322 g cm−3, the microhardness is VHN25 = 534 kg mm−2 (mean of seven measurements) corresponding to the hardness of ∼5 on the Mohs scale. The crystal structure of vapnikite Ca3UO6 differs from that of its synthetic analogue β-Ca3UO6 by having a larger degree of Ca, U disorder. Vapnikite formed at the high-temperature retrograde stage of pyrometamorphism when larnite rocks were altered by fluids/melts of high alkalinity.


2014 ◽  
Vol 78 (3) ◽  
pp. 757-774 ◽  
Author(s):  
F. Cámara ◽  
M. E. Ciriotti ◽  
E. Bittarello ◽  
F. Nestola ◽  
F. Massimi ◽  
...  

AbstractThe new mineral species grandaite, ideally Sr2Al(AsO4)2(OH), has been discovered on the dump of Valletta mine, Maira Valley, Cuneo province, Piedmont, Italy. Its origin is related to the reaction between the ore minerals and hydrothermal solutions. It occurs in thin masses of bright orange to salmon to brown coloured crystals, or infrequently as fan-like aggregates of small (<1 mm) crystals, with reddish-brown streak and waxy to vitreous lustre. Grandaite is associated with aegirine, baryte, braunite, hematite, tilasite, quartz, unidentified Mn oxides and Mn silicates under study.Grandaite is biaxial (+) with refractive indices α = 1.726(1), β = 1.731(1), γ = 1.752(1). Its calculated density is 4.378 g/cm3. Grandaite is monoclinic, space groupP21/m, witha= 7.5764(5),b= 5.9507(4),c= 8.8050(6) Å, β = 112.551(2)°,V= 366.62(4) Å3andZ= 2. The eight strongest diffraction lines of the observed X-ray powder diffraction pattern are [din Å, (I), (hkl)]: 3.194 (100)(11), 2.981 (50.9)(020), 2.922 (40.2)(03), 2.743 (31.4)(120), 2.705 (65.2)(112), 2.087 (51.8) (23), 1.685 (24.5)(321), 1.663 (27.7)(132). Chemical analyses by electron microprobe gave (wt.%) SrO 29.81, CaO 7.28, BaO 1.56, Al2O37.07, Fe2O32.34, Mn2O31.88, MgO 1.04, PbO 0.43, As2O544.95, V2O50.50, P2O50.09, sum 96.95; H2O 1.83 wt.% was calculated by stoichiometry from the results of the crystal-structure analysis. Raman and infrared spectroscopies confirmed the presence of (AsO4)3−and OH groups. The empirical formula calculated on the basis of 9 O a.p.f.u., in agreement with the structural results, is (Sr1.41Ca0.64Ba0.05Pb0.01)∑=2.11(Al0.68Fe0.143+Mn0.123+Mg0.13)∑=1.07[(As0.96V0.01)∑=0.97O4]2(OH), the simplified formula is (Sr,Ca)2(Al,Fe3+)(AsO4)2(OH) and the ideal formula is Sr2Al(AsO4)2(OH).The crystal structure was solved by direct methods and found to be topologically identical to that of arsenbrackebuschite. The structure model was refined on the basis of 1442 observed reflections toR1= 2.78%. In the structure of grandaite, chains of edge-sharingM3+octahedra run along [010] and share vertices with T5+tetrahedra, building up [M3+(T5+O4)2(OH, H2O)] units, which are connected through interstitial divalent cations. Grandaite is named after the informal appellation of the province where the type locality is located. The new mineral was approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2013-059). The discovery of grandaite and of other members of the group (description still in progress) opens up the possibility of exploring the crystal chemistry of the brackebuschite supergroup.


2017 ◽  
Vol 81 (2) ◽  
pp. 305-317 ◽  
Author(s):  
F. Cámara ◽  
E. Bittarello ◽  
M. E. Ciriotti ◽  
F. Nestola ◽  
F. Radica ◽  
...  

AbstractThe new mineral species canosioite, ideally Ba2Fe3+(AsO4)2(OH), has been discovered in the dump of Valletta mine, Maira Valley, Cuneo Province, Piedmont, Italy. Its origin is probably related to the reaction between ore minerals and hydrothermal fluids. It occurs in reddish-brown granules, subhedral millimetre-size crystals, with a pale yellow streak and vitreous lustre. Canosioite is associated with aegirine, baryte, calcite, hematite, bronze Mn-bearing muscovite, unidentified Mn oxides and unidentified arsenates. Canosioite is biaxial (+) with a 2Vmeas= 84(2)°. It is weakly pleochroic withX= brownish yellow,Y= brown,Z= reddish brown,Z>Y>X. Canosioite is monoclinic,P21/m, witha= 7.8642(4),b= 6.1083(3),c= 9.1670(5) Å, β = 112.874(6)°,V= 405.73(4) Å3andZ= 2. Calculated density is 4.943 g cm–3. The seven strongest diffraction lines of the observed powder X-ray diffraction pattern are [din Å, (I) (hkl)]: 3.713 (18)(111), 3.304 (100)(211̄), 3.058 (31)(020), 3.047 (59)(103̄), 2.801 (73)(112), 2.337 (24)(220), 2.158 (24)(123̄). Electron microprobe analyses gave (wt.%): Na2O 0.06, MgO 0.43, CaO 0.02, NiO 0.02, CuO 0.03, SrO 0.42, BaO 49.36, PbO 1.69, Al2O31.25, Mn2O33.89, Fe2O36.95, Sb2O30.01, SiO20.03, P2O50.02, V2O510.88, As2O524.64, SO3 0.01, F 0.02, H2O1.61 was calculated on the basis of 1 (OH,F,H2O) group per formula unit. Infrared spectroscopy confirmed the presence of OH. The empirical formula calculated on the basis of 9 O apfu, is (Ba1.92Pb0.05Sr0.02Na0.01)∑2.00(Fe0.523+Mn0.293+Al0.15Mg0.06)∑1.02[(As0.64V0.36)∑1.00O4]2[(OH0.92F0.01)(H2O)0.07]and the ideal formula is Ba2Fe3+(AsO4)2(OH). The crystal structure was solved by direct methods and found to be isostructural to that of arsenbrackebuschite. The structure model was refined (R1= 2.6%) on the basis of 1245 observed reflections. Canosioite is named after the small municipality of Canosio, where the type locality, the Valletta mine, is situated. The new mineral and name were approved by the International Mineralogical Association Commission on New Minerals and Mineral Names (IMA2015-030).


2015 ◽  
Vol 79 (1) ◽  
pp. 171-189 ◽  
Author(s):  
Fernando Cámara ◽  
Erica Bittarello ◽  
Marco E. Ciriotti ◽  
Fabrizio Nestola ◽  
Francesco Radica ◽  
...  

AbstractThe new mineral species braccoite, ideally NaMn2+5[Si5AsO17(OH)](OH), has been discovered in the Valletta mine dumps, in Maira Valley, Cuneo province, Piedmont, Italy. Its origin is probably related to the reaction between ore minerals and hydrothermal fluids. It occurs as subhedral crystals in brown-red coloured thin masses, with a pale-yellow streak and vitreous to resinous lustre. Braccoite is associated with tiragalloite, for which new data are provided, as well as gamagarite, hematite, manganberzeliite, palenzonaite, quartz, saneroite, tokyoite, unidentified Mn oxides, organic compounds, and Mn arsenates and silicates under study.Braccoite is biaxial positive with refractive indices α = 1.749(1), β = 1.750(1), γ = 1.760(1). It is triclinic, space group P1̄, with a = 9.7354(4), b = 9.9572(3), c = 9.0657(3) Å, α = 92.691(2), β = 117.057(4), γ = 105.323(3)°, V = 740.37(4) Å3 and Z = 2. Its calculated density is 3.56 g/cm3. The ten strongest diffraction lines of the observed powder X-ray diffraction (XRD) pattern are [d in Å, (I), (hkl)]: 3.055 (69)(22̄1), 3.042 (43)(102), 3.012 (65)(32̄1̄), 2.985 (55)(23̄1̄), 2.825 (100)(213̄), 2.708 (92)(220), 2.627 (43)(23̄2̄), 2.381 (58)(41̄1̄), 2.226 (25)(214̄) and 1.680 (433̄)(36). Chemical analyses by wavelength-dispersive spectroscopy electron microprobe gave (wt.%): Na2O 4.06, CaO 0.05, MnO 41.76, MgO 0.96, Al2O3 0.04, CuO 0.02, SiO239.73, As2O5 6.87, V2O5 1.43, SO3 0.01 and F 0.04. H2O 2.20 was calculated on the basis of 2OH groups p.f.u. Raman spectroscopy confirmed the presence of (SiO4)4–, (AsO4)3– and OH groups. The empirical formula, calculated on the basis of Σ cations-(Na,K) = 11 p.f.u., in agreement with the results of the crystal structure, is Na1.06(Mn2+4.46Mn3+0.32Mg0.19V3+0.01Al0.01Ca0.01)[Si5(As0.48Si0.37V5+0.15)O17(OH)](OH0.98F0.02); the simplified formula is Na(Mn,Mg,Al,Ca)5[Si5(As,V,Si)O17(OH)](OH,F).Single-crystal XRD allowed the structure to be solved by direct methods and revealed that braccoite is the As-dominant analogue of saneroite. The structure model was refined on the basis of 4389 observed reflections to R1 = 3.47%. Braccoite is named in honour of Dr Roberto Bracco (b. 1959), a systematic minerals collector with a special interest in manganese minerals. The new mineral was approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA 2013-093).


1993 ◽  
Vol 31 (2) ◽  
pp. 331-336 ◽  
Author(s):  
R. Brasso ◽  
G. Lucchetti ◽  
L. Zefiro ◽  
A. Palenzona

2008 ◽  
Vol 72 (5) ◽  
pp. 1083-1101 ◽  
Author(s):  
W. H. Paar ◽  
Y. Moëlo ◽  
N. N. Mozgova ◽  
N. I. Organova ◽  
C. J. Stanley ◽  
...  

AbstractCoiraite, ideally (Pb,Sn2+)12.5As3Fe2+Sn4+S28, occurs as an economically important tin ore in the large Ag-Sn-Zn polymetallic Pirquitas deposit, Jujuy Province, NW-Argentina. The new mineral species is the As derivative of franckeite and belongs to the cylindrite group of complex Pb sulphosalts with incommensurate composite-layered structures. It is a primary mineral, frequently found in colloform textures, and formed from hydrothermal solutions at low temperature. Associated minerals are franckeite, cylindrite, pyrite-marcasite, as well as minor amounts of hocartite, Ag-rich rhodostannite. arsenopyrite and galena. Laminae of coiraite consist of extremely thin bent platy crystals up to 50 urn long. Electron microprobe analysis (n = 31) gave an empirical formula Pb11.21As2.99Ag0.13Fe1.10Sn6.13S28.0 close to the ideal formula (Pb11.3Sn2+1.2)Σ=12.5As3Fe2+Sn4+S28. Coiraite has two monoclinic sub-cells, Q (pseudotetragonal) and H (pseudohexagonal). Q: a 5.84(1) Å, b 5.86(1) Å, c 17.32(1) Å, β 94.14(1)°, F 590.05(3) Å3, Z = 4, a:b:c = 0.997:1:2.955; H (orthogonal setting): a 6.28(1) Å, b 3.66(1) Å, c 17.33(1) Å, β 91.46(1)°, V398.01(6) Å3, Z = 2, a∶b∶c = 1.716∶1∶4.735. The strongest Debye-Scherrer camera X-ray powder-diffraction lines [d in Å, (I), (hkl)] are: 5.78, (20), (Q and H 003); 4.34, (40), (Q 004); 3.46, (30), (Q and H 005); 3.339, (20), (Q 104); 2.876, (100), (Q and H 006); 2.068, (60), (Q 220).


Author(s):  
B. W. Anderson ◽  
C. J. Payne ◽  
G. F. Claringbull

In October 1945 Count Taaffe, a brilliant if unorthodox Dublin gemmologist, in the course of examining a motley collection of gemstones, came across a small mauve stone which puzzled him greatly. The stone had the appearance, and most of thc characters, of spinel, but afforded clear evidence of double refraction. As recounted below, this stone was later found to belong to an entirely new mineral species-—the only case hitherto known where a mineral has been first encountered as a faceted gem.


Sign in / Sign up

Export Citation Format

Share Document