scholarly journals Natural history of Ctenus medius Keyserling, 1891 (Araneae, Ctenidae) I: observations on habitats and the development of chromatic patterns

2000 ◽  
Vol 60 (3) ◽  
pp. 503-509 ◽  
Author(s):  
C. E. ALMEIDA ◽  
E. F. RAMOS ◽  
E. GOUVÊA ◽  
M. do CARMO-SILVA ◽  
J. COSTA

Ctenus medius Keyserling, 1891 is a common species in several spots of Mata Atlântica, however there is a great lack of studies in all aspects of its natural history. This work aims to elucidate aspects of ecotope preference compared to large spiders, and to provide data on the development of chromatic patterns during its life cycle. The observations on the behavior of C. medius were done in the campus of Centro Universitário de Barra Mansa (UBM) by means of observations and nocturnal collections using cap lamps. For observations on the development of chromatic patterns, spiderlings raised in laboratory, hatched from an oviposition of a female from campus of UBM, and others spiderlings collected in field were used. The field observations indicate that: C. medius seems to prefer ecotopes characterized by dense shrub vegetation or herbal undergrowth; Lycosa erythrognatha and L. nordeskioldii seems to prefer open sites; Phoneutria nigriventer seems to prefer shrub vegetation and anthropogenic ecotopes as rubbish hills; Ancylometes sp. seems to prefer ecotopes near streams. Concerning chromatic patterns, it was observed that males and females show well distinct patterns during the last two instars, allowing distinction by sex without the use of a microscope. Through chromatic patterns it was also possible to draw a distinction between C. medius and C. ornatus longer that 3 mm cephalothorax width. 69 specimens of C. medius (males and females) collected in the campus of UBM did not show a striking polymorphism in chromatic pattern, but one among 7 adult females collected in National Park of Itatiaia, showed a distinct chromatic pattern.

Author(s):  
David Harwood ◽  
Kyle Thompson

Eight in-service teachers and two instructors engaged in an inquiry-based geology field course from June 14 to 29, 2014 through Wyoming, South Dakota, and Nebraska. This team of learners spent three days in mid-June working in the Grand Teton National Park area. The UW-NPS facilities provide an excellent opportunity for participants to discover the natural history of the Teton Range, as well as close-out a few projects while sitting in a real chair, at a real table, a welcome change from our usual campground setting.


2005 ◽  
Vol 26 (4) ◽  
pp. 949-969 ◽  
Author(s):  
Adrian A. Barnett ◽  
Carol Volkmar de Castilho ◽  
Rebecca L. Shapley ◽  
Antenor Anicácio

2019 ◽  
Vol 109 ◽  
Author(s):  
David S. Nogueira ◽  
Arianne M. Cavalcante ◽  
Maria da C. Parente ◽  
Alipio J. S. Pacheco Filho ◽  
Breno M. Freitas

ABSTRACT Euglossa Latreille, 1802 do not live in large colonies, and these are usually maintained or “reactivated” by new females, subordinate to their mother, which construct and provision brood cells. This study aimed to obtain information about the natural history of Euglossa cordata (Linnaeus, 1758) specially focusing on nest behavior. Our specific objective was to answer the following question: do E. cordata females reside in a single nest? We construct 14 artificial nesting boxes and made them available for E. cordata bees in natural environment for seven months. During this time, we use a re-marking method to identify bee fidelity to a single nest box. More specifically, we record bee permanence in the nests, the time bees take to provision brood to new cells and the time taken to offspring emergence. A total of 12 boxes were colonized by E. cordata and 23 cells were built in an average of 9.78 ± 11 days per cell. Eleven females emerged from the cells in 48.6 ± 11 days. Although adult females moved between nests and sometimes used multiple nests at the same time, E. cordata showed a relatively high fidelity to a single nest (81.1% of the female bees stayed in a single nest more than 50% of time).


1972 ◽  
Vol 79 (4) ◽  
pp. 284-294 ◽  
Author(s):  
Allen M. Young

A knowledge of life cycle and natural history are often important prerequisites to studies of population biology in butterflies. Although studies on the systematics and broad distribution patterns of that familiar New World Tropical group, the Ithomiinae, have been conducted (Seitz, 194; Fox, 1956; Fox, 1968), a lot remains to be known about the biology of many species in Central America. This is surprising in light of the considerable interest in these butterflies as members of mimicry complexes. In this spirit, this paper summarizes life cycle and natural history data on a clear wing ithoreiine Hymenitis nero (Hewitson) (Nymphalidae: Ithomiinae) in Costa Rica. Similar studies of several other sympatric ithomiines have either been completed (Young, in prep.) or begun, as a preliminary step towards understanding the local patterns of diversity of this family in selected tropical plant communities.


1972 ◽  
Vol 79 (3) ◽  
pp. 165-178 ◽  
Author(s):  
Allen M. Young

This paper summarizes the life cycle and some aspects of natural history of the tropical pierid, Dismorphia virgo (Dismorphiinae) in Costa Rica. The precise taxonomic status of the butterfly in Central America has not been established, and it may represent a variable northern isolate of the common South American D. critomedia. Therefore, independent of whether the Central American form discussed in this paper has achieved full species status as the more northern virgo or is a subspecies or variety of critomedia evolving towards species status, this paper provides new information on the biology of the butterfly in Costa Rica. The establishment of precise taxonomic position awaits further study, and for the present purpose, I refer to the butterfly as D. virgo.


2021 ◽  
pp. 19-50
Author(s):  
Paul Schmid-Hempel

Parasites are more numerous than non-parasitic species and have evolved in virtually all groups of organisms, such as viruses, prokaryotes (bacteria), protozoa, fungi, nematodes, flatworms, acantocephalans, annelids, crustaceans, and arthropods (crustacea, mites, ticks, insects). These groups have adapted to the parasitic lifestyle in very many ways. Evolution towards parasitism has also followed different routes. Initial steps such as phoresy, followed by later consumption of the transport host, are plausible evolutionary routes. Alternatively, formerly free-living forms have become commensals before evolving parasitism. Complex life cycles with several hosts evolved by scenarios such as upward (adding a new host upwards in the food chain), downward, or lateral incorporation, driven by the advantage of extending growth phases within hosts and increasing fecundity. Examples are digenea; other parasites have added vectors to their life cycle.


Sign in / Sign up

Export Citation Format

Share Document