scholarly journals Synthesis, characterization and thermal studies on solid state 3-methoxybenzoate of lighter trivalent lanthanides

2007 ◽  
Vol 32 (2) ◽  
pp. 17-21 ◽  
Author(s):  
P. R. Dametto ◽  
A. B. Siqueira ◽  
C. T. Carvalho ◽  
M. Ionashiro

Solid-state Ln -3-MeO-Bz compounds, where Ln stands for lighter trivalent lanthanides (La Sm) and 3-methoxybenzoate, have been synthesized. Thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information concerning the composition, dehydration, polymorphic transformation, thermal behaviour and thermal decomposition of the synthesized compounds.

2007 ◽  
Vol 32 (4) ◽  
pp. 49-54 ◽  
Author(s):  
A. B. Siqueira ◽  
C. T. de Carvalho ◽  
E. C. Rodrigues ◽  
E. Y. Ionashiro ◽  
G. Bannach ◽  
...  

Solid State Ln-L compounds, where Ln stands for light trivalent lanthanides (La - Gd) and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, thermal behaviour and thermal decomposition of the isolated compounds.


2018 ◽  
Vol 34 (2) ◽  
pp. 15
Author(s):  
Adriano Buzutti De Siqueira ◽  
Cláudio Teodoro De Carvalho ◽  
Elias Yuki Ionashiro ◽  
Massao Ionashiro

Solid state M-L compounds, were M stands for bivalent Mn, Fe, Co, Ni, Cu, Zn and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, and thermal decomposition of the isolated compounds.


2006 ◽  
Vol 31 (1) ◽  
pp. 21-30 ◽  
Author(s):  
E. C. Rodrigues ◽  
A. B. Siqueira ◽  
E. Y. Ionashiro ◽  
G. Bannach ◽  
M. Ionashiro

Solid-state M-4-MeO-Bz compounds, where M stands for trivalent La, Ce, Pr, Nd and Sm and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, polymorphic transformation, ligand's denticity, thermal behaviour and thermal decomposition of the isolated compounds.


2009 ◽  
Vol 34 (2) ◽  
pp. 15-21
Author(s):  
A. B. Siqueira ◽  
C. T. de Carvalho ◽  
E. Y. Ionashiro ◽  
M. Ionashiro

Solid state M-L compounds, were M stands for bivalent Mn, Fe, Co, Ni, Cu, Zn and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, and thermal decomposition of the isolated compounds.


2010 ◽  
Vol 35 (4) ◽  
pp. 93-100 ◽  
Author(s):  
J. R. Locatelli ◽  
C. T. Carvalho ◽  
F. J. Caires ◽  
M. Ionashiro

Solid-state Ln-L compounds, where Ln stands for heavy trivalent lanthanides (Tb-Lu) and L is malonate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, TG-FTIR system, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The dehydration of the compounds begins at 303 K and the anhydrous compounds are stable up to 548 K. The results also provided information concerning the ligand's denticity, thermal behaviour and identification of some gaseous products evolved during the thermal decomposition of these compounds.


2018 ◽  
Vol 35 (4) ◽  
pp. 93
Author(s):  
José Roberto Locatelli ◽  
Cláudio Teodoro De Carvalho ◽  
Flávio Junior Caires ◽  
Massao Ionashiro

Solid-state Ln-L compounds, where Ln stands for heavy trivalent lanthanides (Tb-Lu) and L is malonate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, TG-FTIR system, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The dehydration of the compounds begins at 303 K and the anhydrous compounds are stable up to 548 K. The results also provided information concerning the ligand’s denticity, thermal behaviour and identification of some gaseous products evolved during the thermal decomposition of these compounds.


1998 ◽  
Vol 23 (0) ◽  
pp. 91-98 ◽  
Author(s):  
Ana Glauce ZAINA CHIARETTO ◽  
Marco Aurélio da Silva CARVALHO FILHO ◽  
Nedja Suely FERNANDES ◽  
Massao IONASHIRO

Solid state compounds of general formula ML2.nH2O [where M is Mg, Ca, Sr or Ba; L is cinnamate (C6H5 -CH=CH-COO-) and n = 2, 4, 0.8, 3 respectively], have been synthetized. Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC) and X-ray diffraction powder patterns have been used to characterize and to study the thermal stability and thermal decomposition of these compounds.


2004 ◽  
Vol 29 (1) ◽  
pp. 31-40 ◽  
Author(s):  
G. Bannach ◽  
E. Schnitzler ◽  
C. B. Melios ◽  
M. Ionashiro

The synthesis of sodium 2-chlorobenzylidenepyruvate and its corresponding acid as well as binary, binary together with it's acid or hydroxo-2-chorobenzylidenepyruvate of aluminium (III), gallium (III) and indium (III), were isolated. Chemical analysis, thermogravimetry, derivative thermogravimetry (TG/DTG), simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and X-ray powder diffractometry have been employed to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition.


2005 ◽  
Vol 30 (1) ◽  
pp. 15-20 ◽  
Author(s):  
E. C. Rodrigues ◽  
A. C. Vallejo ◽  
E.Y. Ionashiro ◽  
G. Bannach ◽  
M. Ionashiro

Solid state M-L compounds, where M stands for bivalent Mn, Ni, Cu and L is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry - differential thermal analysis (TG-DTA), X-ray powder diffractometry, infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.


2010 ◽  
Vol 13 (1) ◽  
pp. 67 ◽  
Author(s):  
Cheng-Hung Hsu ◽  
Wen-Ting Ke ◽  
Shan-Yang Lin

Purpose. The aim of this study was to determine the progressive processes of polymorphic transformation of different gabapentin (GBP) polymorphs by using hot-stage Fourier transform infrared (FTIR) microspectroscopy. Methods. Four polymorphs of GBP were previously prepared and then identified by differential scanning calorimetry (DSC), thermogravimetric (TG) analysis, FTIR microspectroscopy and X-ray powder diffractometry. A novel hot-stage FTIR microspectroscopic technique was used to investigate the progressive steps of polymorphic transformation of each GBP polymorph sealed within two pieces of KBr plates. Results. Four polymorphs (Forms I, II, III and IV) of GBP were well characterized. The GBP form I was proven to be a monohydrate, but other GBP forms II-IV were anhydrous. Different thermal-induced progressive processes and steps of polymorphic interconversion of GBP polymorphs were clearly found from the changes in the three-dimensional IR spectral contour and peak intensity by using hot-stage FTIR microspectroscopy. The results also indicate that GBP form I was dehydrated and transformed to form III, and then converted to form IV; whereas GBP forms II and III directly transformed to form IV during heating. The GBP form IV was the last polymorph before the intramolecular lactamization of GBP. Conclusion. A one-step novel hot-stage FTIR microspectroscopy was successfully applied to simultaneously and continuously investigate the progressive processes and steps of thermal-induced polymorphic interconversion of GBP polymorph in the solid state.


Sign in / Sign up

Export Citation Format

Share Document