scholarly journals A new member of the chalcone synthase (CHS) family in sugarcane

2001 ◽  
Vol 24 (1-4) ◽  
pp. 257-261 ◽  
Author(s):  
Miriam G.G. Contessotto ◽  
Claudia B. Monteiro-Vitorello ◽  
Pilar D.S.C. Mariani ◽  
Luiz L. Coutinho

Sequences from the sugarcane expressed sequence tag (SUCEST) database were analyzed based on their identities to genes encoding chalcone-synthase-like enzymes. The sorghum (Sorghum bicolor) chalcone-synthase (CHS, EC 2.3.1.74) protein sequence (gi|12229613) was used to search the SUCEST database for clusters of sequencing reads that were most similar to chalcone synthase. We found 121 reads with homology to sorghum chalcone synthase, which we were then able to sort into 14 clusters which themselves were divided into two groups (group 1 and group 2) based on the similarity of their deduced amino acid sequences. Clusters in group 1 were more similar to the sorghum enzyme than those in group 2, having the consensus sequence of the active site of chalcone and stilbene synthase. Analysis of gene expression (based on the number of reads from a specific library present in each group) indicated that most of the group 1 reads were from sugarcane flower and root libraries. Group 2 clusters were more similar to the amino acid sequence of an uncharacterized pathogen-induced protein (PI1, gi|9855801) from the S. bicolor expressed sequence tag (EST) database. The group 2 clusters sequences and PI1 proteins are 90% identical, having two amino acid changes at the chalcone and stilbene synthase consensi but conserving the cysteine residue at the active site. The PI1 EST has not been previously associated with chalcone synthase and has a different consensus sequence from the previously described chalcone synthase of sorghum. Most of the group 2 reads were from libraries prepared from sugarcane roots and plants infected with Herbaspirillum rubrisubalbicans and Gluconacetobacter diazotroficans. Our results indicate that we have identified a sugarcane chalcone synthase similar to the pathogen-induced PI1 protein found in the sorghum cDNA libraries, and it appears that both proteins represent new members of the chalcone and stilbene synthase super-family.

2001 ◽  
Vol 24 (1-4) ◽  
pp. 35-41 ◽  
Author(s):  
Dirce Maria Carraro ◽  
Marcio R. Lambais ◽  
Helaine Carrer

Sucrose non-fermenting-1-related protein kinases (SnRKs) may play a major role in regulating gene expression in plant cells. This family of regulatory proteins is represented by sucrose non-fermenting-1 (SNF1) protein kinase in Saccharomyces cerevisiae, AMP-activated protein kinases (AMPKs) in mammals and SnRKs in higher plants. The SnRK family has been reorganized into three subfamilies according to the evolutionary relationships of their amino acid sequences. Members of the SnRK subfamily have been identified in several plants. There is evidence that they are involved in the nutritional and/or environmental stress response, although their roles are not yet well understood. We have identified at least 22 sugarcane expressed sequence tag (EST) contigs encoding putative SnRKs. The amino acid sequence alignment of both putative sugarcane SnRKs and known SnRKs revealed a highly conserved N-terminal catalytic domain. Our results indicated that sugarcane has at least one member of each SnRK subfamily. Expression pattern analysis of sugarcane EST-contigs encoding putative SnRKs in 26 selected cDNA libraries from the sugarcane expressed sequence tag SUCEST database has indicated that members of this family are expressed throughout the plant. Members of the same subfamily showed no specific expression patterns, suggesting that their functions are not related to their phylogenic relationships based on N-terminal amino acid sequence phylogenetic relationships.


1997 ◽  
Vol 119 (3) ◽  
pp. 327-334 ◽  
Author(s):  
T. MORISHITA ◽  
E. NOBUSAWA ◽  
S. LUO ◽  
K. SATO ◽  
S. NAKAJIMA ◽  
...  

Two phenotypes of human influenza A(H1N1) virus are currently circulating in Japan. One (group 1) agglutinates both chicken and goose red blood cells (CRBC and GRBC), the other (group 2) agglutinates GRBC but not CRBC. In the 1995/6 season, group 2 viruses accounted for 70% of the H1N1 viruses isolated in MDCK cells. The 1995/6 viruses were located on two branches of the genetic tree. One branch contained both group 1 and group 2 viruses and the other branch contained only group 2 viruses. Group 2 viruses had aspartic acid at residue 225 in the haemagglutinin (HA) protein, the key amino acid residue for group 2 phenotype. The HA protein of group 1 viruses had a change from aspartic acid to asparagine at residue 225 and the expressed HA protein of these viruses adsorbed CRBC. Serial passage of group 2 viruses in MDCK cells or embryonated chicken eggs caused these viruses to gain the ability to agglutinate CRBC. MDCK-adapted viruses had the same amino acid sequences of HA polypeptide as the original ones, but egg-adapted viruses had changed amino acid sequences. The expressed HA protein from one egg-adapted virus that originally belonged to group 2 adsorbed CRBC.


1994 ◽  
Vol 5 (12) ◽  
pp. 1301-1310 ◽  
Author(s):  
S W Clark ◽  
O Staub ◽  
I B Clark ◽  
E L Holzbaur ◽  
B M Paschal ◽  
...  

An examination of human-expressed sequence tags indicated the existence of an isoform of centractin, an actin-related protein localized to microtubule-associated structures. Using one of these tags, we isolated and determined the nucleotide sequence of a full-length cDNA clone. The protein encoded represents the first example of multiple isoforms of an actin-related protein in a single organism. Northern analysis using centractin-specific probes revealed three species of mRNA in HeLa cells that could encode centractin isoforms. One mRNA encodes the previously-identified centractin (now referred to as alpha-centractin). The full-length cDNA clone isolated using the expressed sequence tag encodes a new member of the centractin family, beta-centractin. A probe specific for alpha-centractin hybridized to the third species of mRNA observed (referred to as gamma-centractin). Comparisons of Northern blots of human tissues indicated that alpha-centractin and beta-centractin mRNAs are equally distributed in all populations of mRNA examined, whereas the expression of gamma-centractin appears to be tissue specific. The amino acid sequence of beta-centractin, deduced from the cDNA, indicates a 91% identity with alpha-centractin, increasing to 96% similarity when conservative amino acid changes are taken into account. As antibodies previously raised against alpha-centractin reacted only poorly with beta-centractin, new antibodies were produced and combined with two-dimensional gel electrophoresis to discriminate the two isoforms. Using this system, the subcellular distribution of the alpha- and beta-isoforms were determined. Both isoforms were found predominantly in the cytosolic fraction as a part of a previously identified 20S complex (referred to as the dynactin complex) with no evidence for a free pool of either isoform. The isoforms were found in a constant ratio of approximately 15:1 (alpha:beta) in the dynactin complex.


2011 ◽  
Vol 6 (4) ◽  
pp. 545-557 ◽  
Author(s):  
Malay Choudhury ◽  
Takahiro Oku ◽  
Shoji Yamada ◽  
Masaharu Komatsu ◽  
Keita Kudoh ◽  
...  

AbstractApolipoproteins such as apolipoprotein (apo) A-I, apoA-IV, and apoE are lipid binding proteins synthesized mainly in the liver and the intestine and play an important role in the transfer of exogenous or endogenous lipids through the circulatory system. To investigate the mechanism of lipid transport in fish, we have isolated some novel genes of the apoA-I family, apoIA-I (apoA-I isoform) 1–11, from Japanese eel by PCR amplification. Some of the isolated genes of apoIA-I corresponded to 28kDa-1 cDNAs which had already been deposited into the database and encoded an apolipoprotein with molecular weight of 28 kDa in the LDL, whereas others seemed to be novel genes. The structural organization of all apoIA-Is consisted of four exons separated by three introns. ApoIA-I10 had a total length of 3232 bp, whereas other genes except for apoIA-I9 ranged from 1280 to 1441 bp. The sequences of apoIA-Is at the exon-intron junctions were mostly consistent with the consensus sequence (GT/AG) at exon-intron boundaries, whereas the sequences of 3′ splice acceptor in intron 1 of apoIA-I1-7 were (AC) but not (AG). The deduced amino acid sequences of all apoIA-Is contained a putative signal peptide and a propeptide of 17 and 5 amino acid residues, respectively. The mature proteins of apoIA-I1-3, 7, and 8 consisted of 237 amino acids, whereas those of apoIA-I4-6 consisted of 239 amino acids. The mature apoIA-I10 sequence showed 65% identity to amino acid sequence of apoIA-I11 which was associated with an apolipoprotein with molecular weight of 23 kDa in the VLDL. All these mature apoIA-I sequences satisfied the common structural features depicted for the exchangeable apolipoproteins such as apoA-I, apoA-IV, and apoE but apoIA-I11 lacked internal repeats 7, 8, and 9 when compared with other members of apoA-I family. Phylogenetic analysis showed that these novel apoIA-Is isolated from Japanese eel were much closer to apoA-I than apoA-IV and apoE, suggesting new members of the apoA-I family.


1987 ◽  
Author(s):  
A Heckel ◽  
K M Hasselbach

Up to now the three-dimensional structure of t-PA or parts of this enzyme is unknown. Using computer graphical methods the spatial structure of the enzymatic part of t-PA is predicted on the hypothesis, the three-dimensional backbone structure of t-PA being similar to that of other serine proteases. The t-PA model was built up in three steps:1) Alignment of the t-PA sequence with other serine proteases. Comparison of enzyme structures available from Brookhaven Protein Data Bank proved elastase as a basis for modeling.2) Exchange of amino acids of elastase differing from the t-PA sequence. The replacement of amino acids was performed such that backbone atoms overlapp completely and side chains superpose as far as possible.3) Modeling of insertions and deletions. To determine the spatial arrangement of insertions and deletions parts of related enzymes such as chymotrypsin or trypsin were used whenever possible. Otherwise additional amino acid sequences were folded to a B-turn at the surface of the proteine, where all insertions or deletions are located. Finally the side chain torsion angles of amino acids were optimised to prevent close contacts of neigh bouring atoms and to improve hydrogen bonds and salt bridges.The resulting model was used to explain binding of arginine 560 of plasminogen to the active site of t-PA. Arginine 560 interacts with Asp 189, Gly 19 3, Ser 19 5 and Ser 214 of t-PA (chymotrypsin numbering). Furthermore interaction of chromo-genic substrate S 2288 with the active site of t-PA was studied. The need for D-configuration of the hydrophobic amino acid at the N-terminus of this tripeptide derivative could be easily explained.


1998 ◽  
Vol 42 (2) ◽  
pp. 436-439 ◽  
Author(s):  
T. R. Walsh ◽  
W. A. Neville ◽  
M. H. Haran ◽  
D. Tolson ◽  
D. J. Payne ◽  
...  

ABSTRACT The Aeromonas veronii bv. sobria metallo-β-lactamase gene, imiS, was cloned. The imiS open reading frame extends for 762 bp and encodes a protein of 254 amino acids with a secreted modified protein of 227 amino acids and a predicted pI of 8.1. To confirm the predicted sequence, purified ImiS was digested and the resulting peptides were identified, yielding an identical sequence for ImiS, with 98% identity to CphA. Both possessed the putative active-site sequence Asn-Tyr-His-Thr-Asp at positions 88 to 92, which is unique to the Aeromonas metallo-β-lactamases.


1995 ◽  
Vol 311 (3) ◽  
pp. 717-721 ◽  
Author(s):  
N M H Thorne ◽  
S Hankin ◽  
M C Wilkinson ◽  
C Nuñez ◽  
R Barraclough ◽  
...  

The cDNA and derived amino acid sequence of human diadenosine 5′,5‴-P1,P4-tetraphosphate pyrophosphohydrolase have been determined with the aid of the GenBank Expressed Sequence Tag database. This enzyme possesses a modification of the MutT sequence motif found in certain nucleotide pyrophosphatases. It is unrelated to the enzymes of diadenosine tetraphosphate catabolism found in prokaryotes and fungi.


2006 ◽  
Vol 34 (1) ◽  
pp. 143-145 ◽  
Author(s):  
T.A. Clarke ◽  
A.M. Hemmings ◽  
B. Burlat ◽  
J.N. Butt ◽  
J.A. Cole ◽  
...  

The recent crystallographic characterization of NrfAs from Sulfurospirillum deleyianum, Wolinella succinogenes, Escherichia coli and Desulfovibrio desulfuricans allows structurally conserved regions to be identified. Comparison of nitrite and sulphite reductase activities from different bacteria shows that the relative activities vary according to organism. By comparison of both amino acid sequences and structures, differences can be identified in the monomer–monomer interface and the active-site channel; these differences could be responsible for the observed variance in substrate activity and indicate that subtle changes in the NrfA structure may optimize the enzyme for different roles.


Sign in / Sign up

Export Citation Format

Share Document