scholarly journals Seasonal diet shifts of seven fish species in an Atlantic rainforest stream in Southeastern Brazil

2003 ◽  
Vol 63 (4) ◽  
pp. 579-588 ◽  
Author(s):  
C. P. Deus ◽  
M. Petrere-Junior

We analyzed the stomach contents of 116 individuals belonging to seven fishes species in order to investigate seasonal changes in feeding strategy and how trophic interactions between species affect community structure in an Atlantic rainforest stream in Southeastern Brazil. Oligosarcus hepsetus and Pimelodus sp. consumed fewer items during the winter. Phalloceros caudimaculatus switched feeding habits from detritus during summer to algae during winter. These examples are related to variations in food availability and species feeding selectivity. The highest diet overlap values, for most species, as measured using Schoener's index, were observed in summer, along with a species tendency to be more generalist. Feeding pattern variation may influence the fish community structure.

Author(s):  
João Neiva ◽  
Rui Coelho ◽  
Karim Erzini

Etmopterus spinax is one of the most abundant predators of the upper continental slope off the Algarve (southern Portugal), where it is captured in large quantities in deep-water fisheries. The feeding habits of E. spinax off the Algarve were investigated through the analysis of stomach contents of 376 individuals. Prey composition was described and maturity, sex and size related variations in the diet analysed. The overall diet of E. spinax suggested a fairly generalized benthopelagic foraging behaviour primarily tuned to pelagic macroplankton/microneckton, teleost fish and cephalopods. Sex and maturity related differences in the diet were not significant. Two main ontogenic diet shifts were observed at about 17 and 28 cm total length. Small and medium sized immature sharks had a diet dominated by eurybathic crustaceans, chiefly Meganyctiphanes norvegica and Pasiphaea sivado. Larger individuals consumed more teleosts and cephalopods, in part associated with scavenging as a new feeding strategy. With increasing shark size the diet diversified both in terms of resources exploited and prey size.


2006 ◽  
Vol 78 (2) ◽  
pp. 147-160 ◽  
Author(s):  
Sergio R. Floeter ◽  
Werther Krohling ◽  
João Luiz Gasparini ◽  
Carlos E. L. Ferreira ◽  
Ilana R. Zalmon

2019 ◽  
Vol 609 ◽  
pp. 33-48 ◽  
Author(s):  
RP Lyon ◽  
DB Eggleston ◽  
DR Bohnenstiehl ◽  
CA Layman ◽  
SW Ricci ◽  
...  

2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


2018 ◽  
Vol 25 (2) ◽  
pp. 229
Author(s):  
Zhongyi LI ◽  
Qiang WU ◽  
Xiujuan SHAN ◽  
Tao YANG ◽  
Fangqun DAI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document