scholarly journals Preimplantation genetic diagnosis associated to Duchenne muscular dystrophy

2017 ◽  
Vol 15 (4) ◽  
pp. 489-491 ◽  
Author(s):  
Bianca Bianco ◽  
Denise Maria Christofolini ◽  
Gabriel Seixas Conceição ◽  
Caio Parente Barbosa

ABSTRACT Duchenne muscular dystrophy is the most common muscle disease found in male children. Currently, there is no effective therapy available for Duchenne muscular dystrophy patients. Therefore, it is essential to make a prenatal diagnosis and provide genetic counseling to reduce the birth of such boys. We report a case of preimplantation genetic diagnosis associated with Duchenne muscular dystrophy. The couple E.P.R., 38-year-old, symptomatic patient heterozygous for a 2 to 47 exon deletion mutation in DMD gene and G.T.S., 39-year-old, sought genetic counseling about preimplantation genetic diagnosis process. They have had a 6-year-old son who died due to Duchenne muscular dystrophy complications. The couple underwent four cycles of intracytoplasmic sperm injection (ICSI) and eight embryos biopsies were analyzed by polymerase chain reaction (PCR) for specific mutation analysis, followed by microarray-based comparative genomic hybridisation (array CGH) for aneuploidy analysis. Preimplantation genetic diagnosis revealed that two embryos had inherited the maternal DMD gene mutation, one embryo had a chromosomal alteration and five embryos were normal. One blastocyst was transferred and resulted in successful pregnancy. The other embryos remain vitrified. We concluded that embryo analysis using associated techniques of PCR and array CGH seems to be safe for embryo selection in cases of X-linked disorders, such as Duchenne muscular dystrophy.

2012 ◽  
Vol 24 (1) ◽  
pp. 231 ◽  
Author(s):  
N. Klymiuk ◽  
C. Thirion ◽  
K. Burkhardt ◽  
A. Wuensch ◽  
S. Krause ◽  
...  

Duchenne muscular dystrophy (DMD) is one of the most common genetic diseases in humans, affecting 1 in 3500 boys. It is characterised by progressive muscle weakness and wasting due to mutations in the dystrophin (DMD) gene resulting in absence of dystrophin protein in skeletal muscle. Although curative treatments are currently not available, genetic and pharmacological approaches are under investigation including early-phase clinical trials. Existing animal models in different species (e.g. mdx mouse, GRMD dog) have been instrumental to understand the pathophysiology of DMD, but have several limitations. Importantly, the causative point mutations (mdx mouse: nonsense mutation; GRMD dog: splice mutation) are different from the most common human mutations (out-of-frame deletion of one or several exons of the DMD gene). We used gene targeting in somatic cells and nuclear transfer to generate a genetically tailored pig model of DMD. A bacterial artificial chromosome (BAC) from the porcine DMD gene was modified by recombineering to replace exon 52, resulting in a frame shift in the transcript. Modified BAC were transfected into male neonatal kidney cells, which were screened by quantitative polymerase chain reaction for replacement of exon 52 in the X-linked DMD gene. Eight of 436 cell clones were successfully targeted and 2 of them were used for nuclear transfer. For each of the cell clones, a pregnancy was established by transfer of cloned embryos into recipient gilts. Four piglets of the first litter were live born and killed within 48 h and tissue samples were processed for histological characterisation. Two piglets of the second litter died during birth due to obstetric complications, whereas the other 2 piglets were delivered by Caesarean section and raised in an artificial feeding system. Their serum creatine kinase (CK) levels were grossly elevated. Although both piglets showed reduced mobility compared with age-matched controls, they were able to move and feed on their own. Immunofluorescence staining of dystrophin was negative in muscle fibres of DMD mutant piglets and the complete absence of dystrophin protein was confirmed by immunoblot analysis. Histological examination of biceps femoris muscle from DMD mutant pigs showed a degenerative myopathy with fibre size variation, rounded fibres, central nuclei, fibrosis and fatty replacement of muscle tissue mimicking the hallmarks of the human disease. In conclusion, we generated the first pig model for a genetic muscle disease. The DMD mutant pig appears to be a bona fide model of the human dystrophy as ascertained by absence of the dystrophin protein, elevated serum CK levels and early degenerative changes on muscle histology. Because deletion of exon 52 is one of the most frequent mutations found in human DMD, the exon 52 mutated DMD pig represents an excellent model for testing targeted genetic treatments. This study was supported by the Bayerische Forschungsstiftung.


2005 ◽  
Vol 25 (13) ◽  
pp. 1200-1205 ◽  
Author(s):  
Mira Malcov ◽  
Dalit Ben-Yosef ◽  
Tamar Schwartz ◽  
Nava Mey-Raz ◽  
Foad Azem ◽  
...  

2004 ◽  
Vol 82 ◽  
pp. S245-S246
Author(s):  
M. Malcov ◽  
N. Mey-Raz ◽  
A. Carmon ◽  
D. Ben-Yosef ◽  
A. Amit ◽  
...  

2006 ◽  
Vol 52 (12) ◽  
pp. 2203-2210 ◽  
Author(s):  
Chia-Cheng Hung ◽  
Chih-Ping Chen ◽  
Shuan-Pei Lin ◽  
Shu-Chin Chien ◽  
Chien-Nan Lee ◽  
...  

Abstract Background: Deletions and duplications involving large DNA segments result in underexpression or overexpression, depending on the changes in allele dose, and are known to cause many common disorders. Detection of allele dose variations in the human genome is increasingly important in medical genetic diagnosis. Methods: We used multiplex quantitative PCR coupled with capillary electrophoresis for accurate allele dose determination. In cases of Prader–Willi syndrome (PWS), a total of 24 patients with PWS, as well as 205 control individuals from the general population, were analyzed by use of multiplex quantitative PCR to amplify the FGFR2 gene, the KRIT1 gene, and the SNRPN gene simultaneously. In cases of Duchenne muscular dystrophy (DMD), we optimized the multiplex quantitative PCR to amplify 38 exons to analyze the DMD gene for rapid diagnosis of 12 DMD-affected males, 12 obligate carriers from families, and 50 unaffected female controls. Results: We were able to unambiguously diagnose the deletion genotype in PWS patients and identify all deletion or duplication genotypes and carrier status in DMD-affected cases with 100% sensitivity and specificity. Conclusions: This report describes a novel single assay that can rapidly quantify allele dose to provide accurate clinical genetic diagnosis. This technique offers a valuable alternative for the rapid detection of genomic deletions or duplications and decreases costs because it does not require expensive fluorescent reagents.


Sign in / Sign up

Export Citation Format

Share Document