otc deficiency
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
pp. 109352662110552
Author(s):  
Angela R. Seasely ◽  
Rachel G. Sinkey ◽  
Sarah Joy Dean ◽  
Maria Descartes ◽  
Virginia E. Duncan

Introduction Ornithine transcarbamylase (OTC) deficiency is the most common urea cycle disorder, inherited in an X-linked manner. Males are severely affected. Female phenotypes vary from asymptomatic to severe, and symptoms may be triggered by high metabolic states like childbirth. Literature on OTC deficiency in pregnancy and placental pathology is limited. Methods Pathology records were searched at a single referral center from 2000–2020 and identified three placental cases from two mothers heterozygous for OTC deficiency. Placental pathology and maternal and neonatal history were reviewed in detail. Results The placenta from one symptomatic mother carrying an affected male fetus showed widespread high-grade fetal vascular malperfusion (FVM) lesions of varying age. These lesions were not seen in the two placentas from the asymptomatic mother. Discussion In cases of symptomatic maternal OTC deficiency, our findings highlight the need for placental examination. Since thrombotic events in the placenta have the potential to associate with fetal and neonatal endothelial damage, a high index of suspicion for neonatal thrombosis may be warranted.


2021 ◽  
Vol 12 ◽  
Author(s):  
Morgane Couchet ◽  
Charlotte Breuillard ◽  
Christelle Corne ◽  
John Rendu ◽  
Béatrice Morio ◽  
...  

Ornithine transcarbamylase (OTC; EC 2.1.3.3) is a ubiquitous enzyme found in almost all organisms, including vertebrates, microorganisms, and plants. Anabolic, mostly trimeric OTCs catalyze the production of L-citrulline from L-ornithine which is a part of the urea cycle. In eukaryotes, such OTC localizes to the mitochondrial matrix, partially bound to the mitochondrial inner membrane and part of channeling multi-enzyme assemblies. In mammals, mainly two organs express OTC: the liver, where it is an integral part of the urea cycle, and the intestine, where it synthesizes citrulline for export and plays a major role in amino acid homeostasis, particularly of L-glutamine and L-arginine. Here, we give an overview on OTC genes and proteins, their tissue distribution, regulation, and physiological function, emphasizing the importance of OTC and urea cycle enzymes for metabolic regulation in human health and disease. Finally, we summarize the current knowledge of OTC deficiency, a rare X-linked human genetic disorder, and its emerging role in various chronic pathologies.


Author(s):  
Stephanie Gobin‐Limballe ◽  
Chris Ottolenghi ◽  
Fabien Reyal ◽  
Jean‐Baptiste Arnoux ◽  
Maryse Magen ◽  
...  

2021 ◽  
Vol 14 (5) ◽  
pp. e241429
Author(s):  
Daniel Kazmierski ◽  
Nishant Sharma ◽  
Kelly O'Leary ◽  
Pius Ochieng

Ornithine transcarbamylase (OTC) deficiency is a genetic disorder of the urea cycle characterised by deficiency in the enzyme OTC, resulting in an accumulation of ammonia. Valproic acid (VPA), a commonly used medication in the treatment of neurologic and psychiatric conditions, has been known to cause episodes of acute hyperammonaemia in patients with OTC deficiency. We present the case of a 29-year-old man with a long history of non-specific psychiatric disorders, who suffered from a hyperammonaemic crisis following the administration of VPA, leading to the diagnosis of OTC deficiency. The patient’s hospital course was complicated by progressive cerebral oedema, which resulted in worsening encephalopathy, seizures and death. We discuss the pathophysiology of hyperammonaemia in OTC deficiency, and various management strategies, including lactulose, levocarnitine, scavenger therapy and haemodialysis.


2021 ◽  
Vol 26 ◽  
pp. 100706
Author(s):  
Runjun D. Kumar ◽  
Lindsay C. Burrage ◽  
Jan Bartos ◽  
Saima Ali ◽  
Eric Schmitt ◽  
...  

2020 ◽  
Vol 18 (2) ◽  
pp. 209-221
Author(s):  
Ngoc-Lan Nguyen ◽  
Ngoc Khanh Nguyen ◽  
Chi Dung Vu ◽  
Nguyen Thi Thu Huong ◽  
Nguyen Huy Hoang

            Our report describes a female presenting with vomiting, fever, coma and right hemiplegia at 26 months of age. Biochemical tests revealed hyperammonemia, hyperlactatemia, elevated glutamine level, elevated transaminase and disorder of prothrombin time. She was priory diagnosed with urea cycle disorders (UCDs). UCDs are caused by mutations in eight genes that regulate the synthesis of enzymes and cofactors involved in urea metabolism. Singleton whole exome sequencing was applied to screen causative variants in these genes in the patient at 6 years of age. The result showed one heterozygous stop loss mutation c.1065A>G in the OTC gene as a potential disease causing in the patient. The mutation c.1065A>G leads to alternation of stop codon to tryptophan, resulting in elongation of fourteen amino acids in ornithine transcarbamylase (OTC) protein (p.Ter355TrpextTer14). Sanger sequencing in the family revealed the mutation c.1065A>G was not present in healthy parents and brother. Therefore, this mutation is considered as a de novo mutation in the patient. The mutation c.1065A>G was conferred to pathogenic according to the standards and guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology with 1 strong (PS2), 3 moderate (PM2, PM4 and PM5) and 1 support criteria (PP2). Although OTC deficiency is an X-linked recessive inheritance, approximately 15% of females carrying heterozygous variants showed the late onset OTC deficiency. Therefore, in combination of clinical presentations, laboratory findings and molecular genetic analyses, we made a definitive diagnosis of the patient with late onset OTC deficiency, a disorder of UCDs.


2020 ◽  
Vol 5 (1-2) ◽  
pp. 87-95 ◽  
Author(s):  
Kuntal Sen ◽  
Matthew T. Whitehead ◽  
Andrea L. Gropman

BACKGROUND: Urea cycle-related brain disease may take on variable neuroimaging manifestations, ranging from normal to abnormal with or without a signature appearance. In the past, we have described the usefulness of multimodal imaging in identifying biomarkers of neuronal injury in UCD patients. In this study, we report unique findings in an adolescent male with neonatal-onset OTC deficiency after an episode of hyperammonemia. MATERIALS AND METHODS: Multiplanar, multisequence MR imaging (T1WI, T2WI, T2 FLAIR, diffusion weighted images and gradient echo) of the brain was performed on seven separate occasions over the course following the acute illness; first five exams were performed within 28 days of admission and the final two exams were performed approximately 3 and 5 months later. RESULTS: 1.The initial MR revealed increased signal on T2WI in the basal ganglia, claustrum and frontoparietal white matter; which remained stable over time. By the 5th exam, signal changes had developed in frontal cortex; reflecting permanent injury. 2. DTI tractography of the corticospinal tracts displayed revealed diminution of the number of projectional and commissural fibers over time. 3. Blood flow measurements demonstrated hypoperfusion on the fifth exams followed by hyperperfusion on the final two studies. 4. MR spectroscopy demonstrated that glutamine was elevated during hyperammonemia with myoinositol reduction, reflecting osmotic buffering. CONCLUSION: This particular multimodal magnetic resonance neuroimaging showed novel, temporally specific manifestations over the disease course in OTC deficiency. This prospective imaging study expands our understanding of the effect of hyperammonemia on the structure and biochemistry of the nervous system.


2020 ◽  
Author(s):  
Leandro R. Soria ◽  
Dany P. Perocheau ◽  
Giulia De Sabbata ◽  
Angela De Angelis ◽  
Gemma Bruno ◽  
...  

ABSTRACTUrea cycle disorders (UCD) are inherited defects in clearance of waste nitrogen with high morbidity and mortality. Novel and more effective therapies for UCD are needed. Studies in mice with constitutive activation of autophagy unraveled Beclin-1 as druggable candidate for therapy of hyperammonemia. Next, we investigated efficacy of cell penetrating autophagy inducing Tat-Beclin-1 (TB-1) peptide for therapy of the two most common UCD, namely ornithine transcarbamylase (OTC) and argininosuccinate lyase (ASL) deficiencies. TB-1 reduced urinary orotic acid and hyperammonemia, and improved survival under protein-rich diet in spf-ash mice, a model of OTC deficiency (proximal UCD). In AslNeo/Neo mice, a model of ASL deficiency (distal UCD), TB-1 increased ureagenesis, reduced argininosuccinate, and improved survival. Moreover, it alleviated hepatocellular injury and decreased both cytoplasmic and nuclear glycogen accumulation in AslNeo/Neo mice. In conclusion, Beclin-1-dependent activation of autophagy improved biochemical and clinical phenotypes of proximal and distal defects of the urea cycle.


2020 ◽  
Vol 23 ◽  
pp. S341
Author(s):  
A. Dress ◽  
J. Butler ◽  
C. Theodore-Oklota ◽  
S. Egan ◽  
M. Paulich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document