Assessment of Food Security Early Warning Systems for East and Southern Africa

10.1596/29269 ◽  
2018 ◽  
Author(s):  
Ademola Braimoh ◽  
Bernard Manyena ◽  
Grace Obuya ◽  
Francis Muraya
2019 ◽  
Vol 100 (6) ◽  
pp. 1011-1027 ◽  
Author(s):  
Chris Funk ◽  
Shraddhanand Shukla ◽  
Wassila Mamadou Thiaw ◽  
James Rowland ◽  
Andrew Hoell ◽  
...  

AbstractOn a planet with a population of more than 7 billion, how do we identify the millions of drought-afflicted people who face a real threat of livelihood disruption or death without humanitarian assistance? Typically, these people are poor and heavily dependent on rainfed agriculture and livestock. Most live in Africa, Central America, or Southwest Asia. When the rains fail, incomes diminish while food prices increase, cutting off the poorest (most often women and children) from access to adequate nutrition. As seen in Ethiopia in 1984 and Somalia in 2011, food shortages can lead to famine. Yet these slow-onset disasters also provide opportunities for effective intervention, as seen in Ethiopia in 2015 and Somalia in 2017. Since 1985, the U.S. Agency for International Development’s Famine Early Warning Systems Network (FEWS NET) has been providing evidence-based guidance for effective humanitarian relief efforts. FEWS NET depends on a Drought Early Warning System (DEWS) to help understand, monitor, model, and predict food insecurity. Here we provide an overview of FEWS NET’s DEWS using examples from recent climate extremes. While drought monitoring and prediction provides just one part of FEWS NET’s monitoring system, it draws from many disciplines—remote sensing, climate prediction, agroclimatic monitoring, and hydrologic modeling. Here we describe FEWS NET’s multiagency multidisciplinary DEWS and Food Security Outlooks. This DEWS uses diagnostic analyses to guide predictions. Midseason droughts are monitored using multiple cutting-edge Earth-observing systems. Crop and hydrologic models can translate these observations into impacts. The resulting information feeds into FEWS NET reports, helping to save lives by motivating and targeting timely humanitarian assistance.


Subject Food security and climate change challenges in the Sahel. Significance Despite improved cereal output in 2018-19, many communities have entered the annual ‘lean season’ in a fragile position. Climate change is slowly destabilising the regional balance, while spreading insecurity prevents the region from realising the full benefit of its sustained development efforts. Impacts At 17.7% above the five-year average, the 2018-19 cereal harvest offers a good basis to meet needs during the May-September lean season. Local shortages should be spotted by robust regional early warning systems, with emergency grain stocks and donors ready to step in. Pastoralist populations are in a particularly vulnerable position, as insecurity affects access to many important grazing zones.


Water SA ◽  
2019 ◽  
Vol 45 (1 January) ◽  
Author(s):  
L Nhamo ◽  
T Mabhaudhi ◽  
AT Modi

Southern Africa is highly vulnerable to drought because of its dependence on climate-sensitive sectors of agriculture, hydroenergy and fisheries. Recurring droughts continue to impact rural livelihoods and degrade the environment. Drought severity in southern Africa is exacerbated by poor levels of preparedness and low adaptive capacity. Whilst weather extremes and hazards are inevitable, the preparedness to manage such hazards determines their impact and whether they become disasters. Southern Africa is often caught unprepared by drought as existing early warning systems lack the drought forecastingcomponent, which often results in reactionary interventions as opposed to well-planned and proactive response mechanisms. This study assesses the spatio-temporal changes of rainfall and aridity in southern Africa through an analysis of long-term precipitation and evaporation trends from 1960 to 2007. Stakeholder consultation was conducted in Madagascar, Malawi, Zambia and Zimbabwe during the peak of the 2015/16 drought, focusing on overall drought impacts, current water resource availability, existing early warning systems, adaptation mechanisms and institutional capacity to mitigate and managedroughts as part of overall disaster risk reduction strategies. Average rainfall has decreased by 26% in the region between 1960 and 2007, and aridity has increased by 11% between 1980 and 2007. The absence of drought forecasting and lack of institutional capacity to mitigate drought impede regional drought risk reduction initiatives. Existing multi-hazard early warning systems in the region focus on flooding and drought monitoring and assessment. Drought forecasting is often not given due consideration, yet it is a key component of early warning and resilience building. We propose a regional drought early warning framework, emphasising the importance of both monitoring and forecasting as being integral to a drought early warning system and building resilience to drought.


2011 ◽  
Vol 12 (1) ◽  
pp. 142-148 ◽  
Author(s):  
L. Genesio ◽  
M. Bacci ◽  
C. Baron ◽  
B. Diarra ◽  
A. Di Vecchia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document