scholarly journals Cross-View Local Structure Preserved Diversity and Consensus Learning for Multi-View Unsupervised Feature Selection

Author(s):  
Chang Tang ◽  
Xinzhong Zhu ◽  
Xinwang Liu ◽  
Lizhe Wang

Multi-view unsupervised feature selection (MV-UFS) aims to select a feature subset from multi-view data without using the labels of samples. However, we observe that existing MV-UFS algorithms do not well consider the local structure of cross views and the diversity of different views, which could adversely affect the performance of subsequent learning tasks. In this paper, we propose a cross-view local structure preserved diversity and consensus semantic learning model for MV-UFS, termed CRV-DCL briefly, to address these issues. Specifically, we project each view of data into a common semantic label space which is composed of a consensus part and a diversity part, with the aim to capture both the common information and distinguishing knowledge across different views. Further, an inter-view similarity graph between each pairwise view and an intra-view similarity graph of each view are respectively constructed to preserve the local structure of data in different views and different samples in the same view. An l2,1-norm constraint is imposed on the feature projection matrix to select discriminative features. We carefully design an efficient algorithm with convergence guarantee to solve the resultant optimization problem. Extensive experimental study is conducted on six publicly real multi-view datasets and the experimental results well demonstrate the effectiveness of CRV-DCL.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3627
Author(s):  
Bo Jin ◽  
Chunling Fu ◽  
Yong Jin ◽  
Wei Yang ◽  
Shengbin Li ◽  
...  

Identifying the key genes related to tumors from gene expression data with a large number of features is important for the accurate classification of tumors and to make special treatment decisions. In recent years, unsupervised feature selection algorithms have attracted considerable attention in the field of gene selection as they can find the most discriminating subsets of genes, namely the potential information in biological data. Recent research also shows that maintaining the important structure of data is necessary for gene selection. However, most current feature selection methods merely capture the local structure of the original data while ignoring the importance of the global structure of the original data. We believe that the global structure and local structure of the original data are equally important, and so the selected genes should maintain the essential structure of the original data as far as possible. In this paper, we propose a new, adaptive, unsupervised feature selection scheme which not only reconstructs high-dimensional data into a low-dimensional space with the constraint of feature distance invariance but also employs ℓ2,1-norm to enable a matrix with the ability to perform gene selection embedding into the local manifold structure-learning framework. Moreover, an effective algorithm is developed to solve the optimization problem based on the proposed scheme. Comparative experiments with some classical schemes on real tumor datasets demonstrate the effectiveness of the proposed method.


Author(s):  
RONG LIU ◽  
ROBERT RALLO ◽  
YORAM COHEN

An unsupervised feature selection method is proposed for analysis of datasets of high dimensionality. The least square error (LSE) of approximating the complete dataset via a reduced feature subset is proposed as the quality measure for feature selection. Guided by the minimization of the LSE, a kernel least squares forward selection algorithm (KLS-FS) is developed that is capable of both linear and non-linear feature selection. An incremental LSE computation is designed to accelerate the selection process and, therefore, enhances the scalability of KLS-FS to high-dimensional datasets. The superiority of the proposed feature selection algorithm, in terms of keeping principal data structures, learning performances in classification and clustering applications, and robustness, is demonstrated using various real-life datasets of different sizes and dimensions.


2020 ◽  
Vol 50 (12) ◽  
pp. 4394-4411
Author(s):  
Hao Li ◽  
Yongli Wang ◽  
Yanchao Li ◽  
Peng Hu ◽  
Ruxin Zhao

Sign in / Sign up

Export Citation Format

Share Document