scholarly journals End-to-End Knowledge-Routed Relational Dialogue System for Automatic Diagnosis

Author(s):  
Lin Xu ◽  
Qixian Zhou ◽  
Ke Gong ◽  
Xiaodan Liang ◽  
Jianheng Tang ◽  
...  

Beyond current conversational chatbots or task-oriented dialogue systems that have attracted increasing attention, we move forward to develop a dialogue system for automatic medical diagnosis that converses with patients to collect additional symptoms beyond their self-reports and automatically makes a diagnosis. Besides the challenges for conversational dialogue systems (e.g. topic transition coherency and question understanding), automatic medical diagnosis further poses more critical requirements for the dialogue rationality in the context of medical knowledge and symptom-disease relations. Existing dialogue systems (Madotto, Wu, and Fung 2018; Wei et al. 2018; Li et al. 2017) mostly rely on datadriven learning and cannot be able to encode extra expert knowledge graph. In this work, we propose an End-to-End Knowledge-routed Relational Dialogue System (KR-DS) that seamlessly incorporates rich medical knowledge graph into the topic transition in dialogue management, and makes it cooperative with natural language understanding and natural language generation. A novel Knowledge-routed Deep Q-network (KR-DQN) is introduced to manage topic transitions, which integrates a relational refinement branch for encoding relations among different symptoms and symptomdisease pairs, and a knowledge-routed graph branch for topic decision-making. Extensive experiments on a public medical dialogue dataset show our KR-DS significantly beats stateof-the-art methods (by more than 8% in diagnosis accuracy). We further show the superiority of our KR-DS on a newly collected medical dialogue system dataset, which is more challenging retaining original self-reports and conversational data between patients and doctors.

2021 ◽  
Vol 11 (13) ◽  
pp. 6057
Author(s):  
Ching-Han Chen ◽  
Ming-Fang Shiu ◽  
Shu-Hui Chen

Dialogue in natural language is the most important communication method for the visually impaired. Therefore, the dialogue system is the main subsystem in the visually impaired navigation system. The purpose of the dialogue system is to understand the user’s intention, gradually establish context through multiple conversations, and finally provide an accurate destination for the navigation system. We use the knowledge graph as the basis of reasoning in the dialogue system, and then update the knowledge graph so that the system gradually conforms to the user’s background. Based on the experience of using the knowledge graph in the navigation system of the visually impaired, we expect that the same framework can be applied to more fields in order to improve the practicality of natural language dialogue in human–computer interaction.


Author(s):  
Bosede Iyiade Edwards ◽  
Idris Oladele Muniru ◽  
Adrian David Cheok

Access to medical care is a global issue. Technology-aided approaches have been applied in addressing this. Interventions have however not focused on medical diagnosis as a fully automated procedure and available applications employ mainly text-based inputs rather than conversation in natural language. We explored the utility of ontology-based chatbot technology for the design of intelligent agents for medical diagnosis through a systematic review of the most recent related literature. English articles published in 2011-2016 returned 233 hits which yielded 11 relevant articles after a 3-stage screening. Findings showed that the creation of expert systems had been the focus of many the studies which utilize the physician-system-patient framework with system training based mostly on expert knowledge for designing web- or mobile phone-based applications that serve assistive purposes. Findings further indicated gaps in the design and evaluation of more effective systems deployable as standalone applications, for example, on an embodied robotic system. The need for technology supporting the physical examination part of diagnosis, connection to data sources on patients’ vitals and medical history are also indicated in addition to the need for more qualitative work on natural language-based interaction. The system should be one that is continuously learning. Future works should also be directed towards the building of more robust knowledge base as well as evaluation of theory-based diagnostic methodological options


2021 ◽  
Author(s):  
Philippe Blache ◽  
Matthis Houlès

This paper presents a dialogue system for training doctors to break bad news. The originality of this work lies in its knowledge representation. All information known before the dialogue (the universe of discourse, the context, the scenario of the dialogue) as well as the knowledge transferred from the doctor to the patient during the conversation is represented in a shared knowledge structure called common ground, that constitute the core of the system. The Natural Language Understanding and the Natural Language Generation modules of the system take advantage on this structure and we present in this paper different original techniques making it possible to implement them efficiently.


2021 ◽  
Vol 7 ◽  
pp. e615
Author(s):  
Javeria Hassan ◽  
Muhammad Ali Tahir ◽  
Adnan Ali

Navigation based task-oriented dialogue systems provide users with a natural way of communicating with maps and navigation software. Natural language understanding (NLU) is the first step for a task-oriented dialogue system. It extracts the important entities (slot tagging) from the user’s utterance and determines the user’s objective (intent determination). Word embeddings are the distributed representations of the input sentence, and encompass the sentence’s semantic and syntactic representations. We created the word embeddings using different methods like FastText, ELMO, BERT and XLNET; and studied their effect on the natural language understanding output. Experiments are performed on the Roman Urdu navigation utterances dataset. The results show that for the intent determination task XLNET based word embeddings outperform other methods; while for the task of slot tagging FastText and XLNET based word embeddings have much better accuracy in comparison to other approaches.


2021 ◽  
Vol 442 ◽  
pp. 260-268
Author(s):  
Wenge Liu ◽  
Jianheng Tang ◽  
Xiaodan Liang ◽  
Qingling Cai

2006 ◽  
Vol 32 (3) ◽  
pp. 417-438 ◽  
Author(s):  
Diane Litman ◽  
Julia Hirschberg ◽  
Marc Swerts

This article focuses on the analysis and prediction of corrections, defined as turns where a user tries to correct a prior error made by a spoken dialogue system. We describe our labeling procedure of various corrections types and statistical analyses of their features in a corpus collected from a train information spoken dialogue system. We then present results of machine-learning experiments designed to identify user corrections of speech recognition errors. We investigate the predictive power of features automatically computable from the prosody of the turn, the speech recognition process, experimental conditions, and the dialogue history. Our best-performing features reduce classification error from baselines of 25.70–28.99% to 15.72%.


Sign in / Sign up

Export Citation Format

Share Document