scholarly journals Deeply Fusing Reviews and Contents for Cold Start Users in Cross-Domain Recommendation Systems

Author(s):  
Wenjing Fu ◽  
Zhaohui Peng ◽  
Senzhang Wang ◽  
Yang Xu ◽  
Jin Li

As one promising way to solve the challenging issues of data sparsity and cold start in recommender systems, crossdomain recommendation has gained increasing research interest recently. Cross-domain recommendation aims to improve the recommendation performance by means of transferring explicit or implicit feedback from the auxiliary domain to the target domain. Although the side information of review texts and item contents has been proven to be useful in recommendation, most existing works only use one kind of side information and cannot deeply fuse this side information with ratings. In this paper, we propose a Review and Content based Deep Fusion Model named RC-DFM for crossdomain recommendation. We first extend Stacked Denoising Autoencoders (SDAE) to effectively fuse review texts and item contents with the rating matrix in both auxiliary and target domains. Through this way, the learned latent factors of users and items in both domains preserve more semantic information for recommendation. Then we utilize a multi-layer perceptron to transfer user latent factors between the two domains to address the data sparsity and cold start issues. Experimental results on real datasets demonstrate the superior performance of RC-DFM compared with state-of-the-art recommendation methods.Deeply Fusing Reviews and Contents for Cold Start Users in Cross-Domain Recommendation Systems

2021 ◽  
Author(s):  
Robert Hu ◽  
Geoff K. Nicholls ◽  
Dino Sejdinovic

AbstractWe outline an inherent flaw of tensor factorization models when latent factors are expressed as a function of side information and propose a novel method to mitigate this. We coin our methodology kernel fried tensor (KFT) and present it as a large-scale prediction and forecasting tool for high dimensional data. Our results show superior performance against LightGBM and Field aware factorization machines (FFM), two algorithms with proven track records, widely used in large-scale prediction. We also develop a variational inference framework for KFT which enables associating the predictions and forecasts with calibrated uncertainty estimates on several datasets.


2021 ◽  
Vol 11 (10) ◽  
pp. 4503
Author(s):  
Lingtong Min ◽  
Deyun Zhou ◽  
Xiaoyang Li ◽  
Qinyi Lv ◽  
Yuanjie Zhi

Distribution mismatch can be easily found in multi-sensor systems, which may be caused by different shoot angles, weather conditions and so on. Domain adaptation aims to build robust classifiers using the knowledge from a well-labeled source domain, while applied on a related but different target domain. Pseudo labeling is a prevalent technique for class-wise distribution alignment. Therefore, numerous efforts have been spent on alleviating the issue of mislabeling. In this paper, unlike existing selective hard labeling works, we propose a fuzzy labeling based graph learning framework for matching conditional distribution. Specifically, we construct the cross-domain affinity graph by considering the fuzzy label matrix of target samples. In order to solve the problem of representation shrinkage, the paradigm of sparse filtering is introduced. Finally, a unified optimization method based on gradient descent is proposed. Extensive experiments show that our method achieves comparable or superior performance when compared to state-of-the-art works.


Author(s):  
Xiaofeng Liu ◽  
Bo Hu ◽  
Linghao Jin ◽  
Xu Han ◽  
Fangxu Xing ◽  
...  

In this work, we propose a domain generalization (DG) approach to learn on several labeled source domains and transfer knowledge to a target domain that is inaccessible in training. Considering the inherent conditional and label shifts, we would expect the alignment of p(x|y) and p(y). However, the widely used domain invariant feature learning (IFL) methods relies on aligning the marginal concept shift w.r.t. p(x), which rests on an unrealistic assumption that p(y) is invariant across domains. We thereby propose a novel variational Bayesian inference framework to enforce the conditional distribution alignment w.r.t. p(x|y) via the prior distribution matching in a latent space, which also takes the marginal label shift w.r.t. p(y) into consideration with the posterior alignment. Extensive experiments on various benchmarks demonstrate that our framework is robust to the label shift and the cross-domain accuracy is significantly improved, thereby achieving superior performance over the conventional IFL counterparts.


Author(s):  
Feng Zhu ◽  
Yan Wang ◽  
Chaochao Chen ◽  
Guanfeng Liu ◽  
Mehmet Orgun ◽  
...  

Cross-Domain Recommendation (CDR) and Cross-System Recommendations (CSR) are two of the promising solutions to address the long-standing data sparsity problem in recommender systems. They leverage the relatively richer information, e.g., ratings, from the source domain or system to improve the recommendation accuracy in the target domain or system. Therefore, finding an accurate mapping of the latent factors across domains or systems is crucial to enhancing recommendation accuracy. However, this is a very challenging task because of the complex relationships between the latent factors of the source and target domains or systems. To this end, in this paper, we propose a Deep framework for both Cross-Domain and Cross-System Recommendations, called DCDCSR, based on Matrix Factorization (MF) models and a fully connected Deep Neural Network (DNN). Specifically, DCDCSR first employs the MF models to generate user and item latent factors and then employs the DNN to map the latent factors across domains or systems. More importantly, we take into account the rating sparsity degrees of individual users and items in different domains or systems and use them to guide the DNN training process for utilizing the rating data more effectively. Extensive experiments conducted on three real-world datasets demonstrate that DCDCSR framework outperforms the state-of-the-art CDR and CSR approaches in terms of recommendation accuracy.


2021 ◽  
Author(s):  
Junyin Zhang ◽  
Yongxin Ge ◽  
Xinqian Gu ◽  
Boyu Hua ◽  
Tao Xiang
Keyword(s):  

2021 ◽  
Vol 13 (2) ◽  
pp. 47-53
Author(s):  
M. Abubakar ◽  
K. Umar

Product recommendation systems are information filtering systems that uses ratings and predictions to make new product suggestions. There are many product recommendation system techniques in existence, these include collaborative filtering, content based filtering, knowledge based filtering, utility based filtering and demographic based filtering. Collaborative filtering techniques is known to be the most popular product recommendation system technique. It utilizes user’s previous product ratings to make new product suggestions. However collaborative filtering have some weaknesses, which include cold start, grey sheep issue, synonyms issue. However the major weakness of collaborative filtering approaches is cold user problem. Cold user problem is the failure of product recommendation systems to make product suggestions for new users. Literature investigation had shown that cold user problem could be effectively addressed using active learning technique of administering personalized questionnaire. Unfortunately, the result of personalized questionnaire technique could contain some user preference uncertainties where the product database is too large (as in Amazon). This research work addresses the weakness of personalized questionnaire technique by applying uncertainty reduction strategy to improve the result obtained from administering personalized questionnaire. In our experimental design we perform four different experiments; Personalized questionnaire approach of solving user based coldstart was implemented using Movielens dataset of 1M size, Personalized questionnaire approach of solving user based cold start was implemented using Movielens dataset of 10M size, Personalized questionnaire with uncertainty reduction was implemented using Movielens dataset of 1M size, and also Personalized  questionnaire with uncertainty reduction was implemented using Movielens dataset of 10M size. The experimental result shows RMSE, Precision and Recall improvement of 0.21, 0.17 and 0.18 respectively in 1M dataset and 0.17, 0.14 and 0.20 in 10M dataset respectively over personalized questionnaire.


Author(s):  
Weizhi Ma ◽  
Min Zhang ◽  
Chenyang Wang ◽  
Cheng Luo ◽  
Yiqun Liu ◽  
...  

Cold start is a challenging problem in recommender systems. Many previous studies attempt to utilize extra information from other platforms to alleviate the problem. Most of the leveraged information is on-topic, directly related to users' preferences in the target domain. Thought to be unrelated, users' off-topic content information (such as user tweets) is usually omitted. However, the off-topic content information also helps to indicate the similarity of users on their tastes, interests, and opinions, which matches the underlying assumption of Collaborative Filtering (CF) algorithms. In this paper, we propose a framework to capture the features from user's off-topic content information in social media and introduce them into Matrix Factorization (MF) based algorithms. The framework is easy to understand and flexible in different embedding approaches and MF based algorithms. To the best of our knowledge, there is no previous study in which user's off-topic content in other platforms is taken into consideration. By capturing the cross-platform content including both on-topic and off-topic information, multiple algorithms with several embedding learning approaches have achieved significant improvements in rating prediction on three datasets. Especially in cold start scenarios, we observe greater enhancement. The results confirm our suggestion that off-topic cross-media information also contributes to the recommendation.


Author(s):  
ChunYan Yin ◽  
YongHeng Chen ◽  
Wanli Zuo

AbstractPreference-based recommendation systems analyze user-item interactions to reveal latent factors that explain our latent preferences for items and form personalized recommendations based on the behavior of others with similar tastes. Most of the works in the recommendation systems literature have been developed under the assumption that user preference is a static pattern, although user preferences and item attributes may be changed through time. To achieve this goal, we develop an Evolutionary Social Poisson Factorization (EPF$$\_$$ _ Social) model, a new Bayesian factorization model that can effectively model the smoothly drifting latent factors using Conjugate Gamma–Markov chains. Otherwise, EPF$$\_$$ _ Social can obtain the impact of friends on social network for user’ latent preferences. We studied our models with two large real-world datasets, and demonstrated that our model gives better predictive performance than state-of-the-art static factorization models.


Sign in / Sign up

Export Citation Format

Share Document