scholarly journals Applying uncertainty reduction strategy for improving performance of questionnaire technique of solving cold user problem

2021 ◽  
Vol 13 (2) ◽  
pp. 47-53
Author(s):  
M. Abubakar ◽  
K. Umar

Product recommendation systems are information filtering systems that uses ratings and predictions to make new product suggestions. There are many product recommendation system techniques in existence, these include collaborative filtering, content based filtering, knowledge based filtering, utility based filtering and demographic based filtering. Collaborative filtering techniques is known to be the most popular product recommendation system technique. It utilizes user’s previous product ratings to make new product suggestions. However collaborative filtering have some weaknesses, which include cold start, grey sheep issue, synonyms issue. However the major weakness of collaborative filtering approaches is cold user problem. Cold user problem is the failure of product recommendation systems to make product suggestions for new users. Literature investigation had shown that cold user problem could be effectively addressed using active learning technique of administering personalized questionnaire. Unfortunately, the result of personalized questionnaire technique could contain some user preference uncertainties where the product database is too large (as in Amazon). This research work addresses the weakness of personalized questionnaire technique by applying uncertainty reduction strategy to improve the result obtained from administering personalized questionnaire. In our experimental design we perform four different experiments; Personalized questionnaire approach of solving user based coldstart was implemented using Movielens dataset of 1M size, Personalized questionnaire approach of solving user based cold start was implemented using Movielens dataset of 10M size, Personalized questionnaire with uncertainty reduction was implemented using Movielens dataset of 1M size, and also Personalized  questionnaire with uncertainty reduction was implemented using Movielens dataset of 10M size. The experimental result shows RMSE, Precision and Recall improvement of 0.21, 0.17 and 0.18 respectively in 1M dataset and 0.17, 0.14 and 0.20 in 10M dataset respectively over personalized questionnaire.

2020 ◽  
Vol 9 (05) ◽  
pp. 25047-25051
Author(s):  
Aniket Salunke ◽  
Ruchika Kukreja ◽  
Jayesh Kharche ◽  
Amit Nerurkar

With the advancement of technology there are millions of songs available on the internet and this creates problem for a person to choose from this vast pool of songs. So, there should be some middleman who must do this task on behalf of user and present most relevant songs that perfectly fits the user’s taste. This task is done by recommendation system. Music recommendation system predicts the user liking towards a particular song based on the listening history and profile. Most of the music recommendation system available today will give most recently played song or songs which have overall highest rating as suggestions to users but these suggestions are not personalized. The paper purposes how the recommendation systems can be used to give personalized suggestions to each and every user with the help of collaborative filtering which uses user similarity to give suggestions. The paper aims at implementing this idea and solving the cold start problem using content based filtering at the start.


Author(s):  
Taushif Anwar ◽  
V. Uma ◽  
Gautam Srivastava

In recommender systems, Collaborative Filtering (CF) plays an essential role in promoting recommendation services. The conventional CF approach has limitations, namely data sparsity and cold-start. The matrix decomposition approach is demonstrated to be one of the effective approaches used in developing recommendation systems. This paper presents a new approach that uses CF and Singular Value Decomposition (SVD)[Formula: see text] for implementing a recommendation system. Therefore, this work is an attempt to extend the existing recommendation systems by (i) finding similarity between user and item from rating matrices using cosine similarity; (ii) predicting missing ratings using a matrix decomposition approach, and (iii) recommending top-N user-preferred items. The recommender system’s performance is evaluated considering Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Performance evaluation is accomplished by comparing the systems developed using CF in combination with six different algorithms, namely SVD, SVD[Formula: see text], Co-Clustering, KNNBasic, KNNBaseline, and KNNWithMeans. We have experimented using MovieLens 100[Formula: see text]K, MovieLens 1[Formula: see text]M, and BookCrossing datasets. The results prove that the proposed approach gives a lesser error rate when cross-validation ([Formula: see text]) is performed. The experimental results show that the lowest error rate is achieved with MovieLens 100[Formula: see text]K dataset ([Formula: see text], [Formula: see text]). The proposed approach also alleviates the sparsity and cold-start problems and recommends the relevant items.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Usha Yadav ◽  
Neelam Duhan ◽  
Komal Kumar Bhatia

Preferring accuracy over computation time or vice versa is very challenging in the context of recommendation systems, which encourages many researchers to opt for hybrid recommendation systems. Currently, researchers are trying hard to produce correct and accurate recommendations by suggesting the use of ontology, but the lack of techniques renders to take its full advantage. One of the major issues in recommender systems bothering many researchers is pure new user cold-start problem which arises due to the absence of information in the system about the new user. Linked Open Data (LOD) initiative sets standards for interoperability among cross domains and has gathered enormous amount of data over the past years, which provides various ways by which recommender system’s performance can be improved by enriching user’s profile with relevant features. This research work focuses on solving pure new user cold-start problem by building user’s profile based on LOD, collaborative features, and social network-based features. Here, a new approach is devised to compute item similarity based on ontology, thus predicting the rating of nonrated item. A modified method to calculate user’s similarity based on collaborative features to deal with other issues such as accuracy and computation time is also proposed. The empirical results and comparative analysis of the proposed hybrid recommendation system dictate its better performance specifically for providing solution to pure new user cold-start problem.


2017 ◽  
Vol 44 (3) ◽  
pp. 331-344 ◽  
Author(s):  
Youdong Yun ◽  
Danial Hooshyar ◽  
Jaechoon Jo ◽  
Heuiseok Lim

The most commonly used algorithm in recommendation systems is collaborative filtering. However, despite its wide use, the prediction accuracy of this algorithm is unexceptional. Furthermore, whether quantitative data such as product rating or purchase history reflect users’ actual taste is questionable. In this article, we propose a method to utilise user review data extracted with opinion mining for product recommendation systems. To evaluate the proposed method, we perform product recommendation test on Amazon product data, with and without the additional opinion mining result on Amazon purchase review data. The performances of these two variants are compared by means of precision, recall, true positive recommendation (TPR) and false positive recommendation (FPR). In this comparison, a large improvement in prediction accuracy was observed when the opinion mining data were taken into account. Based on these results, we answer two main questions: ‘Why is collaborative filtering algorithm not effective?’ and ‘Do quantitative data such as product rating or purchase history reflect users’ actual tastes?’


Author(s):  
Lakshmikanth Paleti ◽  
P. Radha Krishna ◽  
J.V.R. Murthy

Recommendation systems provide reliable and relevant recommendations to users and also enable users’ trust on the website. This is achieved by the opinions derived from reviews, feedbacks and preferences provided by the users when the product is purchased or viewed through social networks. This integrates interactions of social networks with recommendation systems which results in the behavior of users and user’s friends. The techniques used so far for recommendation systems are traditional, based on collaborative filtering and content based filtering. This paper provides a novel approach called User-Opinion-Rating (UOR) for building recommendation systems by taking user generated opinions over social networks as a dimension. Two tripartite graphs namely User-Item-Rating and User-Item-Opinion are constructed based on users’ opinion on items along with their ratings. Proposed approach quantifies the opinions of users and results obtained reveal the feasibility.


Author(s):  
M. Waseem Chughtai ◽  
Imran Ghani ◽  
Ali Selamat ◽  
Seung Ryul Jeong

Web-based learning or e-Learning in contrast to traditional education systems offer a lot of benefits. This article presents the Goal-based Framework for providing personalized similarities between multi users profile preferences in formal e-Learning scenarios. It consists of two main approaches: content-based filtering and collaborative filtering. Because only traditional content-based filtering is not sufficient to generate the recommendations for new-users, therefore, the proposed work hybridized multi user's collaborative filtering functionalities with personalized content-based profile preferences filtering. The main purpose of this proposed work is to (a) overcome the user-based cold-start profile recommendations and (b) improve the recommendations accuracy for new-users in formal e-learning recommendation systems. The experimental has been done by using the famous ‘MovieLens' dataset with 15.86% density of the user-item matrix with respect to ratings, while the evaluation of experimental results have been performed with precision mean and recall mean to test the effectiveness of Goal-based personalized recommendation framework. The Experimental result Precision: 81.90% and Recall: 86.56% show that the proposed framework goals performed well for the improvement of user-based cold-start issue as well as for content-based profile recommendations, using multi users personalized collaborative similarities, in formal e-Learning scenarios effectively.


2019 ◽  
Vol 13 ◽  
pp. 267-271
Author(s):  
Jacek Bielecki ◽  
Oskar Ceglarski ◽  
Maria Skublewska-Paszkowska

Recommendation systems are class of information filter applications whose main goal is to provide personalized recommendations. The main goal of the research was to compare two ways of creating personalized recommendations. The recommendation system was built on the basis of a content-based cognitive filtering method and on the basis of a collaborative filtering method based on user ratings. The conclusions of the research show the advantages and disadvantages of both methods.


2020 ◽  
Vol 9 (1) ◽  
pp. 1548-1553

Music recommendation systems are playing a vital role in suggesting music to the users from huge volumes of digital libraries available. Collaborative filtering (CF) is a one of the well known method used in recommendation systems. CF is either user centric or item centric. The former is known as user-based CF and later is known as item-based CF. This paper proposes an enhancement to item-based collaborative filtering method by considering correlation among items. Lift and Pearson Correlation coefficient are used to find the correlation among items. Song correlation matrix is constructed by using correlation measures. Proposed method is evaluated on the benchmark dataset and results obtained are compared with basic item-based CF


Author(s):  
Ruobing Xie ◽  
Zhijie Qiu ◽  
Jun Rao ◽  
Yi Liu ◽  
Bo Zhang ◽  
...  

Real-world integrated personalized recommendation systems usually deal with millions of heterogeneous items. It is extremely challenging to conduct full corpus retrieval with complicated models due to the tremendous computation costs. Hence, most large-scale recommendation systems consist of two modules: a multi-channel matching module to efficiently retrieve a small subset of candidates, and a ranking module for precise personalized recommendation. However, multi-channel matching usually suffers from cold-start problems when adding new channels or new data sources. To solve this issue, we propose a novel Internal and contextual attention network (ICAN), which highlights channel-specific contextual information and feature field interactions between multiple channels. In experiments, we conduct both offline and online evaluations with case studies on a real-world integrated recommendation system. The significant improvements confirm the effectiveness and robustness of ICAN, especially for cold-start channels. Currently, ICAN has been deployed on WeChat Top Stories used by millions of users. The source code can be obtained from https://github.com/zhijieqiu/ICAN.


Sign in / Sign up

Export Citation Format

Share Document