scholarly journals Distance-Based Equilibria in Normal-Form Games

2020 ◽  
Vol 34 (02) ◽  
pp. 1750-1757
Author(s):  
Erman Acar ◽  
Reshef Meir

We propose a simple uncertainty modification for the agent model in normal-form games; at any given strategy profile, the agent can access only a set of “possible profiles” that are within a certain distance from the actual action profile. We investigate the various instantiations in which the agent chooses her strategy using well-known rationales e.g., considering the worst case, or trying to minimize the regret, to cope with such uncertainty. Any such modification in the behavioral model naturally induces a corresponding notion of equilibrium; a distance-based equilibrium. We characterize the relationships between the various equilibria, and also their connections to well-known existing solution concepts such as Trembling-hand perfection. Furthermore, we deliver existence results, and show that for some class of games, such solution concepts can actually lead to better outcomes.

2012 ◽  
pp. 87-112
Author(s):  
Yoav Shoham ◽  
Kevin Leyton-Brown

Author(s):  
János Flesch ◽  
Dries Vermeulen ◽  
Anna Zseleva

AbstractWe present a general existence result for a type of equilibrium in normal-form games, which extends the concept of Nash equilibrium. We consider nonzero-sum normal-form games with an arbitrary number of players and arbitrary action spaces. We impose merely one condition: the payoff function of each player is bounded. We allow players to use finitely additive probability measures as mixed strategies. Since we do not assume any measurability conditions, for a given strategy profile the expected payoff is generally not uniquely defined, and integration theory only provides an upper bound, the upper integral, and a lower bound, the lower integral. A strategy profile is called a legitimate equilibrium if each player evaluates this profile by the upper integral, and each player evaluates all his possible deviations by the lower integral. We show that a legitimate equilibrium always exists. Our equilibrium concept and existence result are motivated by Vasquez (2017), who defines a conceptually related equilibrium notion, and shows its existence under the conditions of finitely many players, separable metric action spaces and bounded Borel measurable payoff functions. Our proof borrows several ideas from (Vasquez (2017)), but is more direct as it does not make use of countably additive representations of finitely additive measures by (Yosida and Hewitt (1952)).


Author(s):  
Roxana Rădulescu ◽  
Timothy Verstraeten ◽  
Yijie Zhang ◽  
Patrick Mannion ◽  
Diederik M. Roijers ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Bruno Yun ◽  
Srdjan Vesic ◽  
Nir Oren

In this paper we describe an argumentation-based representation of normal form games, and demonstrate how argumentation can be used to compute pure strategy Nash equilibria. Our approach builds on Modgil’s Extended Argumentation Frameworks. We demonstrate its correctness, showprove several theoretical properties it satisfies, and outline how it can be used to explain why certain strategies are Nash equilibria to a non-expert human user.


Sign in / Sign up

Export Citation Format

Share Document