scholarly journals Co-GCN for Multi-View Semi-Supervised Learning

2020 ◽  
Vol 34 (04) ◽  
pp. 4691-4698
Author(s):  
Shu Li ◽  
Wen-Tao Li ◽  
Wei Wang

In many real-world applications, the data have several disjoint sets of features and each set is called as a view. Researchers have developed many multi-view learning methods in the past decade. In this paper, we bring Graph Convolutional Network (GCN) into multi-view learning and propose a novel multi-view semi-supervised learning method Co-GCN by adaptively exploiting the graph information from the multiple views with combined Laplacians. Experimental results on real-world data sets verify that Co-GCN can achieve better performance compared with state-of-the-art multi-view semi-supervised methods.

Author(s):  
Chao Qian ◽  
Guiying Li ◽  
Chao Feng ◽  
Ke Tang

The subset selection problem that selects a few items from a ground set arises in many applications such as maximum coverage, influence maximization, sparse regression, etc. The recently proposed POSS algorithm is a powerful approximation solver for this problem. However, POSS requires centralized access to the full ground set, and thus is impractical for large-scale real-world applications, where the ground set is too large to be stored on one single machine. In this paper, we propose a distributed version of POSS (DPOSS) with a bounded approximation guarantee. DPOSS can be easily implemented in the MapReduce framework. Our extensive experiments using Spark, on various real-world data sets with size ranging from thousands to millions, show that DPOSS can achieve competitive performance compared with the centralized POSS, and is almost always better than the state-of-the-art distributed greedy algorithm RandGreeDi.


2020 ◽  
Vol 68 ◽  
pp. 311-364
Author(s):  
Francesco Trovo ◽  
Stefano Paladino ◽  
Marcello Restelli ◽  
Nicola Gatti

Multi-Armed Bandit (MAB) techniques have been successfully applied to many classes of sequential decision problems in the past decades. However, non-stationary settings -- very common in real-world applications -- received little attention so far, and theoretical guarantees on the regret are known only for some frequentist algorithms. In this paper, we propose an algorithm, namely Sliding-Window Thompson Sampling (SW-TS), for nonstationary stochastic MAB settings. Our algorithm is based on Thompson Sampling and exploits a sliding-window approach to tackle, in a unified fashion, two different forms of non-stationarity studied separately so far: abruptly changing and smoothly changing. In the former, the reward distributions are constant during sequences of rounds, and their change may be arbitrary and happen at unknown rounds, while, in the latter, the reward distributions smoothly evolve over rounds according to unknown dynamics. Under mild assumptions, we provide regret upper bounds on the dynamic pseudo-regret of SW-TS for the abruptly changing environment, for the smoothly changing one, and for the setting in which both the non-stationarity forms are present. Furthermore, we empirically show that SW-TS dramatically outperforms state-of-the-art algorithms even when the forms of non-stationarity are taken separately, as previously studied in the literature.


Author(s):  
Yuguang Yan ◽  
Mingkui Tan ◽  
Yanwu Xu ◽  
Jiezhang Cao ◽  
Michael Ng ◽  
...  

The issue of data imbalance occurs in many real-world applications especially in medical diagnosis, where normal cases are usually much more than the abnormal cases. To alleviate this issue, one of the most important approaches is the oversampling method, which seeks to synthesize minority class samples to balance the numbers of different classes. However, existing methods barely consider global geometric information involved in the distribution of minority class samples, and thus may incur distribution mismatching between real and synthetic samples. In this paper, relying on optimal transport (Villani 2008), we propose an oversampling method by exploiting global geometric information of data to make synthetic samples follow a similar distribution to that of minority class samples. Moreover, we introduce a novel regularization based on synthetic samples and shift the distribution of minority class samples according to loss information. Experiments on toy and real-world data sets demonstrate the efficacy of our proposed method in terms of multiple metrics.


Author(s):  
Xuan Wu ◽  
Qing-Guo Chen ◽  
Yao Hu ◽  
Dengbao Wang ◽  
Xiaodong Chang ◽  
...  

Multi-view multi-label learning serves an important framework to learn from objects with diverse representations and rich semantics. Existing multi-view multi-label learning techniques focus on exploiting shared subspace for fusing multi-view representations, where helpful view-specific information for discriminative modeling is usually ignored. In this paper, a novel multi-view multi-label learning approach named SIMM is proposed which leverages shared subspace exploitation and view-specific information extraction. For shared subspace exploitation, SIMM jointly minimizes confusion adversarial loss and multi-label loss to utilize shared information from all views. For view-specific information extraction, SIMM enforces an orthogonal constraint w.r.t. the shared subspace to utilize view-specific discriminative information. Extensive experiments on real-world data sets clearly show the favorable performance of SIMM against other state-of-the-art multi-view multi-label learning approaches.


2019 ◽  
Vol 8 (3) ◽  
pp. 7071-7081

Current generation real-world data sets processed through machine learning are imbalanced by nature. This imbalanced data enables the researchers with a challenging scenario in the context of perdition for both the machine learning and data mining algorithms. It is observed from the past research studies most of the imbalanced data sets consists of the major classes and minor classes and the major class leads the minor class. Several standards and hybrid prediction algorithms are proposed in various application domains but in most of the real-time data sets analyzed in the studies are imbalanced by nature thereby affecting the accuracy of the prediction. This paper presents a systematic survey of the past research studies to analyze intrinsic data characteristics and techniques utilized for handling class-imbalanced data. In addition, this study reveals the research gaps, trends and patterns in existing studies and discusses briefly on future research directions


Author(s):  
Zhi Lu ◽  
Yang Hu ◽  
Bing Zeng

Factorization models have been extensively used for recovering the missing entries of a matrix or tensor. However, directly computing all of the entries using the learned factorization models is prohibitive when the size of the matrix/tensor is large. On the other hand, in many applications, such as collaborative filtering, we are only interested in a few entries that are the largest among them. In this work, we propose a sampling-based approach for finding the top entries of a tensor which is decomposed by the CANDECOMP/PARAFAC model. We develop an algorithm to sample the entries with probabilities proportional to their values. We further extend it to make the sampling proportional to the $k$-th power of the values, amplifying the focus on the top ones. We provide theoretical analysis of the sampling algorithm and evaluate its performance on several real-world data sets. Experimental results indicate that the proposed approach is orders of magnitude faster than exhaustive computing. When applied to the special case of searching in a matrix, it also requires fewer samples than the other state-of-the-art method.


Author(s):  
Qian-Wei Wang ◽  
Yu-Feng Li ◽  
Zhi-Hua Zhou

Partial label learning deals with training examples each associated with a set of candidate labels, among which only one label is valid. Previous studies typically assume that the candidate label sets are provided for all training examples. In many real-world applications such as video character classification, however, it is generally difficult to label a large number of instances and there exists much data left to be unlabeled. We call this kind of problem semi-supervised partial label learning. In this paper, we propose the SSPL method to address this problem. Specifically, an iterative label propagation procedure between partial label examples and unlabeled instances is employed to disambiguate the candidate label sets of partial label examples as well as assign valid labels to unlabeled instances. The importance of unlabeled instances increases adaptively as the number of iteration increases, since they carry richer labeling information. Finally, unseen instances are classified based on the minimum reconstruction error on both partial label and unlabeled instances. Experiments on real-world data sets clearly validate the effectiveness of the proposed SSPL method.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550003 ◽  
Author(s):  
Armin Daneshpazhouh ◽  
Ashkan Sami

The task of semi-supervised outlier detection is to find the instances that are exceptional from other data, using some labeled examples. In many applications such as fraud detection and intrusion detection, this issue becomes more important. Most existing techniques are unsupervised. On the other hand, semi-supervised approaches use both negative and positive instances to detect outliers. However, in many real world applications, very few positive labeled examples are available. This paper proposes an innovative approach to address this problem. The proposed method works as follows. First, some reliable negative instances are extracted by a kNN-based algorithm. Afterwards, fuzzy clustering using both negative and positive examples is utilized to detect outliers. Experimental results on real data sets demonstrate that the proposed approach outperforms the previous unsupervised state-of-the-art methods in detecting outliers.


Author(s):  
Yi Fan ◽  
Nan Li ◽  
Chengqian Li ◽  
Zongjie Ma ◽  
Longin Jan Latecki ◽  
...  

The Maximum Vertex Weight Clique (MVWC) problem is NP-hard and also important in real-world applications. In this paper we propose to use the restart and the random walk strategies to improve local search for MVWC. If a solution is revisited in some particular situation, the search will restart. In addition, when the local search has no other options except dropping vertices, it will use random walk. Experimental results show that our solver outperforms state-of-the-art solvers in DIMACS and finds a new best-known solution. Also it is the unique solver which is comparable with state-of-the-art methods on both BHOSLIB and large crafted graphs. Furthermore we evaluated our solver in clustering aggregation. Experimental results on a number of real data sets demonstrate that our solver outperforms the state-of-the-art for solving the derived MVWC problem and helps improve the final clustering results.


2020 ◽  
Vol 34 (04) ◽  
pp. 6430-6437 ◽  
Author(s):  
Xingyu Wu ◽  
Bingbing Jiang ◽  
Kui Yu ◽  
Huanhuan Chen ◽  
Chunyan Miao

Multi-label feature selection has received considerable attentions during the past decade. However, existing algorithms do not attempt to uncover the underlying causal mechanism, and individually solve different types of variable relationships, ignoring the mutual effects between them. Furthermore, these algorithms lack of interpretability, which can only select features for all labels, but cannot explain the correlation between a selected feature and a certain label. To address these problems, in this paper, we theoretically study the causal relationships in multi-label data, and propose a novel Markov blanket based multi-label causal feature selection (MB-MCF) algorithm. MB-MCF mines the causal mechanism of labels and features first, to obtain a complete representation of information about labels. Based on the causal relationships, MB-MCF then selects predictive features and simultaneously distinguishes common features shared by multiple labels and label-specific features owned by single labels. Experiments on real-world data sets validate that MB-MCF could automatically determine the number of selected features and simultaneously achieve the best performance compared with state-of-the-art methods. An experiment in Emotions data set further demonstrates the interpretability of MB-MCF.


Sign in / Sign up

Export Citation Format

Share Document