scholarly journals Addressing Autonomy in Conceptual Design

AI Magazine ◽  
2019 ◽  
Vol 40 (2) ◽  
pp. 3-16 ◽  
Author(s):  
Robert Morris ◽  
Anjan Chakrabarty

Aircraft design is an iterative process of creating a design concept from a set of requirements. Conceptual design is an early phase in the process, during which preliminary decisions and trade studies are made from a set of requirements related to mission objective and costs. Although much attention has been paid to applying autonomy technologies to robotic systems, including air vehicles, there has been little attention paid to incorporating autonomy as part of the conceptual design process. Consequently, designing for autonomy tends to be retrofitted to a vehicle that has already gone through a complete design process rather than as part of the initial process. This derivative approach to designing autonomous systems is suboptimal, and there is evidence that this has hindered the acceptance of autonomy technologies. This article proposes an approach to conceptual design for aircraft that incorporates autonomy into the conceptual design process. To illustrate the principles introduced, we consider the example of configuring an autonomous small unmanned aerial vehicle for searching and tracking a target of interest.

2020 ◽  
Vol 10 (4) ◽  
pp. 1300 ◽  
Author(s):  
Xin Zhao ◽  
Zhou Zhou ◽  
Xiaoping Zhu ◽  
An Guo

This paper describes our work on a small, hand-launched, solar-powered unmanned aerial vehicle (UAV) suitable for low temperatures and high altitudes, which has the perpetual flight potential for conservation missions for rare animals in the plateau area in winter. Firstly, the conceptual design method of a small, solar-powered UAV based on energy balance is proposed, which is suitable for flight in high-altitude and low-temperature area. The solar irradiance model, which can reflect the geographical location and time, was used. Based on the low-temperature discharge test of the battery, a battery weight model considering the influence of low temperature on the battery performance was proposed. Secondly, this paper introduces the detailed design of solar UAV for plateau area, including layout design, structure design, load, and avionics. To increase the proportion of solar cells covered, the ailerons were removed and a rudder was used to control both roll and yaw. Then, the dynamics model of an aileron-free layout UAV was developed, and the differences in maneuverability and stability of aileron-free UAV in plateau and plain areas were analyzed. The control law and trajectory tracking control law were designed for the aileron-free UAV. Finally, the flight test was conducted in Qiangtang, Tibet, at an altitude of 4500 m, China’s first solar-powered UAV to take off and land above 4500 m on the plateau in winter (−30 °C). The test data showed the success of the scheme, validated the conceptual design method and the success of the control system for aileron-free UAV, and analyzed the feasibility of perpetual flight carrying different loads according to the flight energy consumption data.


2018 ◽  
Vol 233 ◽  
pp. 00026
Author(s):  
Teresa Donateo ◽  
Claudia Lucia De Pascalis ◽  
Antonio Ficarella

This study aims at investigating the synergy between powertrain and structure within the design process of a fixed-wing tail-sitter unmanned aerial vehicle (UAV). The UAV is equipped with a pure-electric power system and has vertical take-off and landing capabilities (VTOL). The problem is addressed by running a contemporary optimization of the parameters of both the powertrain and the UAV’s structure, in order to maximize electric endurance and payload weight through the usage of a performant multi-objective evolutionary algorithm named SMS-EMOA. Three different designs are selected, discussed and compared with literature results on the same UAV to quantify the increase of payload and cruise time that can be obtained by exploiting the synergy between structure and powertrain. The potentiality of furtherly improving payload through the usage of multi-functional panels, while keeping the same endurance, is also quantified and compared with the technologies proposed in literature.


Author(s):  
Cheolwan Kim ◽  
Yung-Gyo Lee

A general procedure of preliminary design of aircraft and one-way fluid-structure interaction (FSI) applied to aircraft design is introduced briefly. Then, FSI and optimization technique are implemented to optimize a wing shape of an unmanned aerial vehicle (UAV) for minimum cruise drag. FSI analysis and optimization processes for minimizing drag of UAV are explained. Design variables are wing taper ratio and dihedral angle, and objective function is the cruise drag of UAV. Fluid solution is generated with Euler solver and structural analysis is performed with FEM solver, Diamond. Sample points are selected by Design of Experiment (DOE) method and Kriging method is used for generation of an approximation model.


2021 ◽  
Vol 1173 (1) ◽  
pp. 012055
Author(s):  
M A Moelyadi ◽  
M A Sulthoni ◽  
M F Zulkarnain ◽  
M F Akbar ◽  
B K Assakandari

2021 ◽  
Vol 10 (11) ◽  
pp. 738
Author(s):  
Vít Krátký ◽  
Pavel Petráček ◽  
Tiago Nascimento ◽  
Michaela Čadilová ◽  
Milan Škobrtal ◽  
...  

The use of robotic systems, especially multi-rotor aerial vehicles, in the documentation of historical buildings and cultural heritage monuments has become common in recent years. However, the teleoperated robotic systems have significant limitations encouraging the ongoing development of autonomous unmanned aerial vehicles (UAVs). The autonomous robotic platforms provide a more accurate and safe measurement in distant and difficult to access areas than their teleoperated counterpart. Through the use of autonomous aerial robotic systems, access to such places by humans and building of external infrastructures like scaffolding for documentation purposes is no longer necessary. In this work, we aim to present a novel autonomous unmanned aerial vehicle designed for the documentation of hardly attainable areas of historical buildings. The prototype of this robot was tested in several historical monuments comprising scanned objects located in dark and hardly accessible areas in the upper parts of tall naves. This manuscript presents the results from two specific places: the Church of St. Anne and St. Jacob the Great in Stará Voda, and St. Maurice Church in Olomouc, both in the Czech Republic. Finally, we also compare the three-dimensional map obtained with the measurements made by the 3D laser scanner carried onboard UAV against the ones performed by a 3D terrestrial laser scanner.


2017 ◽  
Vol 43 (1) ◽  
pp. 249-276
Author(s):  
Paweł Szczepaniak ◽  
Michał Jóźko

Abstract The test stand for investigations of flow characteristics of pneumatic distributor has been presented in this paper. This test stand has been composed as requirements include in standard PN-92/M-73763. The results of experimental and simulation investigations for standard five ways and two position pneumatic distributor have been presented. In simulations have been used CFD of SolidWorks Flow Simulation application. Flow characteristic of pneumatic distributor is necessary for design process of special pneumatic circuits of UAV launchers. CFD methods allow specify flow characteristics. Simulation research allow effective pneumatic components modification, whose used of special pneumatic circuits of UAV launchers. Results of experimental and simulation investigations were analyzed and compared.


Sign in / Sign up

Export Citation Format

Share Document