scholarly journals A Survey of Cross-lingual Word Embedding Models

2019 ◽  
Vol 65 ◽  
pp. 569-631 ◽  
Author(s):  
Sebastian Ruder ◽  
Ivan Vulić ◽  
Anders Søgaard

Cross-lingual representations of words enable us to reason about word meaning in multilingual contexts and are a key facilitator of cross-lingual transfer when developing natural language processing models for low-resource languages. In this survey, we provide a comprehensive typology of cross-lingual word embedding models. We compare their data requirements and objective functions. The recurring theme of the survey is that many of the models presented in the literature optimize for the same objectives, and that seemingly different models are often equivalent, modulo optimization strategies, hyper-parameters, and such. We also discuss the different ways cross-lingual word embeddings are evaluated, as well as future challenges and research horizons.

Digital ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 145-161
Author(s):  
Kowshik Bhowmik ◽  
Anca Ralescu

This article presents a systematic literature review on quantifying the proximity between independently trained monolingual word embedding spaces. A search was carried out in the broader context of inducing bilingual lexicons from cross-lingual word embeddings, especially for low-resource languages. The returned articles were then classified. Cross-lingual word embeddings have drawn the attention of researchers in the field of natural language processing (NLP). Although existing methods have yielded satisfactory results for resource-rich languages and languages related to them, some researchers have pointed out that the same is not true for low-resource and distant languages. In this paper, we report the research on methods proposed to provide better representation for low-resource and distant languages in the cross-lingual word embedding space.


2020 ◽  
Author(s):  
Masashi Sugiyama

Recently, word embeddings have been used in many natural language processing problems successfully and how to train a robust and accurate word embedding system efficiently is a popular research area. Since many, if not all, words have more than one sense, it is necessary to learn vectors for all senses of word separately. Therefore, in this project, we have explored two multi-sense word embedding models, including Multi-Sense Skip-gram (MSSG) model and Non-parametric Multi-sense Skip Gram model (NP-MSSG). Furthermore, we propose an extension of the Multi-Sense Skip-gram model called Incremental Multi-Sense Skip-gram (IMSSG) model which could learn the vectors of all senses per word incrementally. We evaluate all the systems on word similarity task and show that IMSSG is better than the other models.


2019 ◽  
Author(s):  
William Jin

Recently, word embeddings have been used in many natural language processing problems successfully and how to train a robust and accurate word embedding system efficiently is a popular research area. Since many, if not all, words have more than one sense, it is necessary to learn vectors for all senses of word separately. Therefore, in this project, we have explored two multi-sense word embedding models, including Multi-Sense Skip-gram (MSSG) model and Non-parametric Multi-sense Skip Gram model (NP-MSSG). Furthermore, we propose an extension of the Multi-Sense Skip-gram model called Incremental Multi-Sense Skip-gram (IMSSG) model which could learn the vectors of all senses per word incrementally. We evaluate all the systems on word similarity task and show that IMSSG is better than the other models.


Author(s):  
Tianyuan Zhou ◽  
João Sedoc ◽  
Jordan Rodu

Many tasks in natural language processing require the alignment of word embeddings. Embedding alignment relies on the geometric properties of the manifold of word vectors. This paper focuses on supervised linear alignment and studies the relationship between the shape of the target embedding. We assess the performance of aligned word vectors on semantic similarity tasks and find that the isotropy of the target embedding is critical to the alignment. Furthermore, aligning with an isotropic noise can deliver satisfactory results. We provide a theoretical framework and guarantees which aid in the understanding of empirical results.


2021 ◽  
pp. 233-252
Author(s):  
Upendar Rao Rayala ◽  
Karthick Seshadri

Sentiment analysis is perceived to be a multi-disciplinary research domain composed of machine learning, artificial intelligence, deep learning, image processing, and social networks. Sentiment analysis can be used to determine opinions of the public about products and to find the customers' interest and their feedback through social networks. To perform any natural language processing task, the input text/comments should be represented in a numerical form. Word embeddings represent the given text/sentences/words as a vector that can be employed in performing subsequent natural language processing tasks. In this chapter, the authors discuss different techniques that can improve the performance of sentiment analysis using concepts and techniques like traditional word embeddings, sentiment embeddings, emoticons, lexicons, and neural networks. This chapter also traces the evolution of word embedding techniques with a chronological discussion of the recent research advancements in word embedding techniques.


2020 ◽  
Author(s):  
Masashi Sugiyama

In this last work, we did a exclusive survey related to multisense embeddings building methods. In this work, we extend our previous work and try to improve the current methods. Recently, word embeddings have been used in many natural language processing problems successfully and how to train a robust and accurate word embedding system efficiently is a popular research area. Since many, if not all, words have more than one sense, it is necessary to learn vectors for all senses of word separately. Therefore, in this project, we have explored two multi-sense word embedding models, including Multi-Sense Skip-gram (MSSG) model and Non-parametric Multi-sense Skip Gram model (NP-MSSG). Furthermore, we propose an extension of the Multi-Sense Skip-gram model called Incremental Multi-Sense Skip-gram (IMSSG) model which could learn the vectors of all senses per word incrementally. We evaluate all the systems on word similarity task and show that IMSSG is better than the other models.


2020 ◽  
pp. 016555152096278
Author(s):  
Rouzbeh Ghasemi ◽  
Seyed Arad Ashrafi Asli ◽  
Saeedeh Momtazi

With the advent of deep neural models in natural language processing tasks, having a large amount of training data plays an essential role in achieving accurate models. Creating valid training data, however, is a challenging issue in many low-resource languages. This problem results in a significant difference between the accuracy of available natural language processing tools for low-resource languages compared with rich languages. To address this problem in the sentiment analysis task in the Persian language, we propose a cross-lingual deep learning framework to benefit from available training data of English. We deployed cross-lingual embedding to model sentiment analysis as a transfer learning model which transfers a model from a rich-resource language to low-resource ones. Our model is flexible to use any cross-lingual word embedding model and any deep architecture for text classification. Our experiments on English Amazon dataset and Persian Digikala dataset using two different embedding models and four different classification networks show the superiority of the proposed model compared with the state-of-the-art monolingual techniques. Based on our experiment, the performance of Persian sentiment analysis improves 22% in static embedding and 9% in dynamic embedding. Our proposed model is general and language-independent; that is, it can be used for any low-resource language, once a cross-lingual embedding is available for the source–target language pair. Moreover, by benefitting from word-aligned cross-lingual embedding, the only required data for a reliable cross-lingual embedding is a bilingual dictionary that is available between almost all languages and the English language, as a potential source language.


2013 ◽  
Vol 30 (1) ◽  
pp. 45-75 ◽  
Author(s):  
Fouad Zablith ◽  
Grigoris Antoniou ◽  
Mathieu d'Aquin ◽  
Giorgos Flouris ◽  
Haridimos Kondylakis ◽  
...  

AbstractOntology evolution aims at maintaining an ontology up to date with respect to changes in the domain that it models or novel requirements of information systems that it enables. The recent industrial adoption of Semantic Web techniques, which rely on ontologies, has led to the increased importance of the ontology evolution research. Typical approaches to ontology evolution are designed as multiple-stage processes combining techniques from a variety of fields (e.g., natural language processing and reasoning). However, the few existing surveys on this topic lack an in-depth analysis of the various stages of the ontology evolution process. This survey extends the literature by adopting a process-centric view of ontology evolution. Accordingly, we first provide an overall process model synthesized from an overview of the existing models in the literature. Then we survey the major approaches to each of the steps in this process and conclude on future challenges for techniques aiming to solve that particular stage.


2021 ◽  
pp. 275-288
Author(s):  
Khalid Alnajjar

Big languages such as English and Finnish have many natural language processing (NLP) resources and models, but this is not the case for low-resourced and endangered languages as such resources are so scarce despite the great advantages they would provide for the language communities. The most common types of resources available for low-resourced and endangered languages are translation dictionaries and universal dependencies. In this paper, we present a method for constructing word embeddings for endangered languages using existing word embeddings of different resource-rich languages and the translation dictionaries of resource-poor languages. Thereafter, the embeddings are fine-tuned using the sentences in the universal dependencies and aligned to match the semantic spaces of the big languages; resulting in cross-lingual embeddings. The endangered languages we work with here are Erzya, Moksha, Komi-Zyrian and Skolt Sami. Furthermore, we build a universal sentiment analysis model for all the languages that are part of this study, whether endangered or not, by utilizing cross-lingual word embeddings. The evaluation conducted shows that our word embeddings for endangered languages are well-aligned with the resource-rich languages, and they are suitable for training task-specific models as demonstrated by our sentiment analysis models which achieved high accuracies. All our cross-lingual word embeddings and sentiment analysis models will be released openly via an easy-to-use Python library.


Sign in / Sign up

Export Citation Format

Share Document