Deep Persian sentiment analysis: Cross-lingual training for low-resource languages

2020 ◽  
pp. 016555152096278
Author(s):  
Rouzbeh Ghasemi ◽  
Seyed Arad Ashrafi Asli ◽  
Saeedeh Momtazi

With the advent of deep neural models in natural language processing tasks, having a large amount of training data plays an essential role in achieving accurate models. Creating valid training data, however, is a challenging issue in many low-resource languages. This problem results in a significant difference between the accuracy of available natural language processing tools for low-resource languages compared with rich languages. To address this problem in the sentiment analysis task in the Persian language, we propose a cross-lingual deep learning framework to benefit from available training data of English. We deployed cross-lingual embedding to model sentiment analysis as a transfer learning model which transfers a model from a rich-resource language to low-resource ones. Our model is flexible to use any cross-lingual word embedding model and any deep architecture for text classification. Our experiments on English Amazon dataset and Persian Digikala dataset using two different embedding models and four different classification networks show the superiority of the proposed model compared with the state-of-the-art monolingual techniques. Based on our experiment, the performance of Persian sentiment analysis improves 22% in static embedding and 9% in dynamic embedding. Our proposed model is general and language-independent; that is, it can be used for any low-resource language, once a cross-lingual embedding is available for the source–target language pair. Moreover, by benefitting from word-aligned cross-lingual embedding, the only required data for a reliable cross-lingual embedding is a bilingual dictionary that is available between almost all languages and the English language, as a potential source language.

Author(s):  
Toluwase Victor Asubiaro ◽  
Ebelechukwu Gloria Igwe

African languages, including those that are natives to Nigeria, are low-resource languages because they lack basic computing resources such as language-dependent hardware keyboard. Speakers of these low-resource languages are therefore unfairly deprived of information access on the internet. There is no information about the level of progress that has been made on the computation of Nigerian languages. Hence, this chapter presents a state-of-the-art review of Nigerian languages natural language processing. The review reveals that only four Nigerian languages; Hausa, Ibibio, Igbo, and Yoruba have been significantly studied in published NLP papers. Creating alternatives to hardware keyboard is one of the most popular research areas, and means such as automatic diacritics restoration, virtual keyboard, and optical character recognition have been explored. There was also an inclination towards speech and computational morphological analysis. Resource development and knowledge representation modeling of the languages using rapid resource development and cross-lingual methods are recommended.


2021 ◽  
Vol 11 (5) ◽  
pp. 1974 ◽  
Author(s):  
Chanhee Lee ◽  
Kisu Yang ◽  
Taesun Whang ◽  
Chanjun Park ◽  
Andrew Matteson ◽  
...  

Language model pretraining is an effective method for improving the performance of downstream natural language processing tasks. Even though language modeling is unsupervised and thus collecting data for it is relatively less expensive, it is still a challenging process for languages with limited resources. This results in great technological disparity between high- and low-resource languages for numerous downstream natural language processing tasks. In this paper, we aim to make this technology more accessible by enabling data efficient training of pretrained language models. It is achieved by formulating language modeling of low-resource languages as a domain adaptation task using transformer-based language models pretrained on corpora of high-resource languages. Our novel cross-lingual post-training approach selectively reuses parameters of the language model trained on a high-resource language and post-trains them while learning language-specific parameters in the low-resource language. We also propose implicit translation layers that can learn linguistic differences between languages at a sequence level. To evaluate our method, we post-train a RoBERTa model pretrained in English and conduct a case study for the Korean language. Quantitative results from intrinsic and extrinsic evaluations show that our method outperforms several massively multilingual and monolingual pretrained language models in most settings and improves the data efficiency by a factor of up to 32 compared to monolingual training.


Digital ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 145-161
Author(s):  
Kowshik Bhowmik ◽  
Anca Ralescu

This article presents a systematic literature review on quantifying the proximity between independently trained monolingual word embedding spaces. A search was carried out in the broader context of inducing bilingual lexicons from cross-lingual word embeddings, especially for low-resource languages. The returned articles were then classified. Cross-lingual word embeddings have drawn the attention of researchers in the field of natural language processing (NLP). Although existing methods have yielded satisfactory results for resource-rich languages and languages related to them, some researchers have pointed out that the same is not true for low-resource and distant languages. In this paper, we report the research on methods proposed to provide better representation for low-resource and distant languages in the cross-lingual word embedding space.


Author(s):  
Mario Jojoa Acosta ◽  
Gema Castillo-Sánchez ◽  
Begonya Garcia-Zapirain ◽  
Isabel de la Torre Díez ◽  
Manuel Franco-Martín

The use of artificial intelligence in health care has grown quickly. In this sense, we present our work related to the application of Natural Language Processing techniques, as a tool to analyze the sentiment perception of users who answered two questions from the CSQ-8 questionnaires with raw Spanish free-text. Their responses are related to mindfulness, which is a novel technique used to control stress and anxiety caused by different factors in daily life. As such, we proposed an online course where this method was applied in order to improve the quality of life of health care professionals in COVID 19 pandemic times. We also carried out an evaluation of the satisfaction level of the participants involved, with a view to establishing strategies to improve future experiences. To automatically perform this task, we used Natural Language Processing (NLP) models such as swivel embedding, neural networks, and transfer learning, so as to classify the inputs into the following three categories: negative, neutral, and positive. Due to the limited amount of data available—86 registers for the first and 68 for the second—transfer learning techniques were required. The length of the text had no limit from the user’s standpoint, and our approach attained a maximum accuracy of 93.02% and 90.53%, respectively, based on ground truth labeled by three experts. Finally, we proposed a complementary analysis, using computer graphic text representation based on word frequency, to help researchers identify relevant information about the opinions with an objective approach to sentiment. The main conclusion drawn from this work is that the application of NLP techniques in small amounts of data using transfer learning is able to obtain enough accuracy in sentiment analysis and text classification stages.


Author(s):  
Santosh Kumar Mishra ◽  
Rijul Dhir ◽  
Sriparna Saha ◽  
Pushpak Bhattacharyya

Image captioning is the process of generating a textual description of an image that aims to describe the salient parts of the given image. It is an important problem, as it involves computer vision and natural language processing, where computer vision is used for understanding images, and natural language processing is used for language modeling. A lot of works have been done for image captioning for the English language. In this article, we have developed a model for image captioning in the Hindi language. Hindi is the official language of India, and it is the fourth most spoken language in the world, spoken in India and South Asia. To the best of our knowledge, this is the first attempt to generate image captions in the Hindi language. A dataset is manually created by translating well known MSCOCO dataset from English to Hindi. Finally, different types of attention-based architectures are developed for image captioning in the Hindi language. These attention mechanisms are new for the Hindi language, as those have never been used for the Hindi language. The obtained results of the proposed model are compared with several baselines in terms of BLEU scores, and the results show that our model performs better than others. Manual evaluation of the obtained captions in terms of adequacy and fluency also reveals the effectiveness of our proposed approach. Availability of resources : The codes of the article are available at https://github.com/santosh1821cs03/Image_Captioning_Hindi_Language ; The dataset will be made available: http://www.iitp.ac.in/∼ai-nlp-ml/resources.html .


Author(s):  
Warnia Nengsih ◽  
M. Mahrus Zein ◽  
Nazifa Hayati

Sentiment analysis adalah metode untuk memperoleh data dari berbagai platform yang tersedia di internet. Kemajuan teknologi memungkinkan mesin untuk mengenali suatu istilah yang dianggap sebagai opini positif maupun sebaliknya. Data-data dan opini tersebut berperan penting sebagai umpan balik produk, layanan, dan topik lainnya. Tanpa perlu memperoleh opini secara langsung dari masyarakat, pihak penyedia telah mendapatkan evaluasi yang penting guna mengembangkan diri. Bisnis perhotelan merupakan bidang yang terkait dengan jasa memberikan layanan pada pelanggan. Indikator keberlangsungan bisnis ini juga bergantung pada umpan balik pelanggannya dan dijadikan sebagai acuan untuk pengambilan kebijakan strategis. Teknik sentiment analysis berbasis Natural Language Processing dapat mengatasi permasalahan tersebut. Pada makalah ini prediksi dilakukan menggunakan classifier Random Forest (RF), sementara untuk merangkum kualitas classifier, digunakan kurva Receiver Operating Characteristic (ROC). Kurva ROC berupa grafik yang baik untuk merangkum kualitas classifier. Semakin tinggi kurva berada di atas garis diagonal, semakin baik prediksinya, dengan nilai kurva ROC yang diperoleh sebesar 0,90. Terlihat hasil ulasan terhadap opini pelanggan terhadap jasa dan pelayanan yang diberikan oleh hotel untuk kategori positif lebih banyak daripada kategori negatif. Polaritas dari ulasan diperoleh 68% ulasan pelanggan berada pada area positif dan 32% berada pada area negatif.


Author(s):  
Kirti Jain

Sentiment analysis, also known as sentiment mining, is a submachine learning task where we want to determine the overall sentiment of a particular document. With machine learning and natural language processing (NLP), we can extract the information of a text and try to classify it as positive, neutral, or negative according to its polarity. In this project, We are trying to classify Twitter tweets into positive, negative, and neutral sentiments by building a model based on probabilities. Twitter is a blogging website where people can quickly and spontaneously share their feelings by sending tweets limited to 140 characters. Because of its use of Twitter, it is a perfect source of data to get the latest general opinion on anything.


2019 ◽  
Vol 8 (4) ◽  
pp. 10289-10293

Sentiment Analysis is a tool used for determining the Polarity or Emotion of a Sentence. It is a field of Natural Language Processing which focuses on the study of opinions. In this study, the researchers solved one key challenge in Sentiment Analysis, which is to consider the Ending Punctuation Marks present in a sentence. Ending punctuation marks plays a significant role in Emotion Recognition and Intensity Level Recognition. The research made used of tweets expressing opinions about Philippine President Rodrigo Duterte. These downloaded tweets served as the inputs. It was initially subjected to pre-processing stage to be able to prepare the sentences for processing. A Language Model was created to serve as the classifier for determining the scores of the tweets. The scores give the polarity of the sentence. Accuracy is very important in sentiment analysis. To increase the chance of correctly identifying the polarity of the tweets, the input undergone Intensity Level Recognition which determines the intensifiers and negations within the sentences. The system was evaluated with overall performance of 80.27%.


Sign in / Sign up

Export Citation Format

Share Document