scholarly journals Word vs. Class-Based Word Sense Disambiguation

2015 ◽  
Vol 54 ◽  
pp. 83-122 ◽  
Author(s):  
Ruben Izquierdo ◽  
Armando Suarez ◽  
German Rigau

As empirically demonstrated by the Word Sense Disambiguation (WSD) tasks of the last SensEval/SemEval exercises, assigning the appropriate meaning to words in context has resisted all attempts to be successfully addressed. Many authors argue that one possible reason could be the use of inappropriate sets of word meanings. In particular, WordNet has been used as a de-facto standard repository of word meanings in most of these tasks. Thus, instead of using the word senses defined in WordNet, some approaches have derived semantic classes representing groups of word senses. However, the meanings represented by WordNet have been only used for WSD at a very fine-grained sense level or at a very coarse-grained semantic class level (also called SuperSenses). We suspect that an appropriate level of abstraction could be on between both levels. The contributions of this paper are manifold. First, we propose a simple method to automatically derive semantic classes at intermediate levels of abstraction covering all nominal and verbal WordNet meanings. Second, we empirically demonstrate that our automatically derived semantic classes outperform classical approaches based on word senses and more coarse-grained sense groupings. Third, we also demonstrate that our supervised WSD system benefits from using these new semantic classes as additional semantic features while reducing the amount of training examples. Finally, we also demonstrate the robustness of our supervised semantic class-based WSD system when tested on out of domain corpus.

Author(s):  
Pascual Cantos Gómez

This chapter starts exploring the potential of co-occurrence data for word sense disambiguation. The findings on the robustness of the different distribution of co-occurrence data on the assumption that distinct meanings of the same word attract different co-occurrence data, has taken the author to experiment (i) on possible grouping of word meanings by means of cluster analysis and (ii) on word sense disambiguation using discriminant function analysis. In addition, two priorities have been pursued: first, find robust statistical techniques, and second, minimize computational costs. Future research aims at the transition from coarse-grained senses to finer-grained ones by means of reiteration of the same model on different levels of contextual differentiation.


2002 ◽  
Vol 8 (4) ◽  
pp. 359-373 ◽  
Author(s):  
BERNARDO MAGNINI ◽  
CARLO STRAPPARAVA ◽  
GIOVANNI PEZZULO ◽  
ALFIO GLIOZZO

This paper explores the role of domain information in word sense disambiguation. The underlying hypothesis is that domain labels, such as MEDICINE, ARCHITECTURE and SPORT, provide a useful way to establish semantic relations among word senses, which can be profitably used during the disambiguation process. Results obtained at the SENSEVAL-2 initiative confirm that for a significant subset of words domain information can be used to disambiguate with a very high level of precision.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xin Wang ◽  
Wanli Zuo ◽  
Ying Wang

Word sense disambiguation (WSD) is a fundamental problem in nature language processing, the objective of which is to identify the most proper sense for an ambiguous word in a given context. Although WSD has been researched over the years, the performance of existing algorithms in terms of accuracy and recall is still unsatisfactory. In this paper, we propose a novel approach to word sense disambiguation based on topical and semantic association. For a given document, supposing that its topic category is accurately discriminated, the correct sense of the ambiguous term is identified through the corresponding topic and semantic contexts. We firstly extract topic discriminative terms from document and construct topical graph based on topic span intervals to implement topic identification. We then exploit syntactic features, topic span features, and semantic features to disambiguate nouns and verbs in the context of ambiguous word. Finally, we conduct experiments on the standard data set SemCor to evaluate the performance of the proposed method, and the results indicate that our approach achieves relatively better performance than existing approaches.


2021 ◽  
pp. 1-55
Author(s):  
Daniel Loureiro ◽  
Kiamehr Rezaee ◽  
Mohammad Taher Pilehvar ◽  
Jose Camacho-Collados

Abstract Transformer-based language models have taken many fields in NLP by storm. BERT and its derivatives dominate most of the existing evaluation benchmarks, including those for Word Sense Disambiguation (WSD), thanks to their ability in capturing context-sensitive semantic nuances. However, there is still little knowledge about their capabilities and potential limitations in encoding and recovering word senses. In this article, we provide an in-depth quantitative and qualitative analysis of the celebrated BERT model with respect to lexical ambiguity. One of the main conclusions of our analysis is that BERT can accurately capture high-level sense distinctions, even when a limited number of examples is available for each word sense. Our analysis also reveals that in some cases language models come close to solving coarse-grained noun disambiguation under ideal conditions in terms of availability of training data and computing resources. However, this scenario rarely occurs in real-world settings and, hence, many practical challenges remain even in the coarse-grained setting. We also perform an in-depth comparison of the two main language model based WSD strategies, i.e., fine-tuning and feature extraction, finding that the latter approach is more robust with respect to sense bias and it can better exploit limited available training data. In fact, the simple feature extraction strategy of averaging contextualized embeddings proves robust even using only three training sentences per word sense, with minimal improvements obtained by increasing the size of this training data.


2007 ◽  
Vol 33 (4) ◽  
pp. 553-590 ◽  
Author(s):  
Diana McCarthy ◽  
Rob Koeling ◽  
Julie Weeds ◽  
John Carroll

There has been a great deal of recent research into word sense disambiguation, particularly since the inception of the Senseval evaluation exercises. Because a word often has more than one meaning, resolving word sense ambiguity could benefit applications that need some level of semantic interpretation of language input. A major problem is that the accuracy of word sense disambiguation systems is strongly dependent on the quantity of manually sense-tagged data available, and even the best systems, when tagging every word token in a document, perform little better than a simple heuristic that guesses the first, or predominant, sense of a word in all contexts. The success of this heuristic is due to the skewed nature of word sense distributions. Data for the heuristic can come from either dictionaries or a sample of sense-tagged data. However, there is a limited supply of the latter, and the sense distributions and predominant sense of a word can depend on the domain or source of a document. (The first sense of “star” for example would be different in the popular press and scientific journals). In this article, we expand on a previously proposed method for determining the predominant sense of a word automatically from raw text. We look at a number of different data sources and parameterizations of the method, using evaluation results and error analyses to identify where the method performs well and also where it does not. In particular, we find that the method does not work as well for verbs and adverbs as nouns and adjectives, but produces more accurate predominant sense information than the widely used SemCor corpus for nouns with low coverage in that corpus. We further show that the method is able to adapt successfully to domains when using domain specific corpora as input and where the input can either be hand-labeled for domain or automatically classified.


Author(s):  
Zijian Hu ◽  
Fuli Luo ◽  
Yutong Tan ◽  
Wenxin Zeng ◽  
Zhifang Sui

Word Sense Disambiguation (WSD), as a tough task in Natural Language Processing (NLP), aims to identify the correct sense of an ambiguous word in a given context. There are two mainstreams in WSD. Supervised methods mainly utilize labeled context to train a classifier which generates the right probability distribution of word senses. Meanwhile knowledge-based (unsupervised) methods which focus on glosses (word sense definitions) always calculate the similarity of context-gloss pair as score to find out the right word sense. In this paper, we propose a generative adversarial framework WSD-GAN which combines two mainstream methods in WSD. The generative model, based on supervised methods, tries to generate a probability distribution over the word senses. Meanwhile the discriminative model, based on knowledge-based methods, focuses on predicting the relevancy of the context-gloss pairs and identifies the correct pairs over the others. Furthermore, in order to optimize both two models, we leverage policy gradient to enhance the performances of the two models mutually. Our experimental results show that WSD-GAN achieves competitive results on several English all-words WSD datasets.


2020 ◽  
Vol 34 (05) ◽  
pp. 8758-8765 ◽  
Author(s):  
Bianca Scarlini ◽  
Tommaso Pasini ◽  
Roberto Navigli

Contextual representations of words derived by neural language models have proven to effectively encode the subtle distinctions that might occur between different meanings of the same word. However, these representations are not tied to a semantic network, hence they leave the word meanings implicit and thereby neglect the information that can be derived from the knowledge base itself. In this paper, we propose SensEmBERT, a knowledge-based approach that brings together the expressive power of language modelling and the vast amount of knowledge contained in a semantic network to produce high-quality latent semantic representations of word meanings in multiple languages. Our vectors lie in a space comparable with that of contextualized word embeddings, thus allowing a word occurrence to be easily linked to its meaning by applying a simple nearest neighbour approach.We show that, whilst not relying on manual semantic annotations, SensEmBERT is able to either achieve or surpass state-of-the-art results attained by most of the supervised neural approaches on the English Word Sense Disambiguation task. When scaling to other languages, our representations prove to be equally effective as their English counterpart and outperform the existing state of the art on all the Word Sense Disambiguation multilingual datasets. The embeddings are released in five different languages at http://sensembert.org.


2015 ◽  
pp. 269-292 ◽  
Author(s):  
Paweł Kędzia ◽  
Maciej Piasecki ◽  
Marlena Orlińska

Word Sense Disambiguation Based on Large Scale Polish CLARIN Heterogeneous Lexical ResourcesLexical resources can be applied in many different Natural Language Engineering tasks, but the most fundamental task is the recognition of word senses used in text contexts. The problem is difficult, not yet fully solved and different lexical resources provided varied support for it. Polish CLARIN lexical semantic resources are based on the plWordNet — a very large wordnet for Polish — as a central structure which is a basis for linking together several resources of different types. In this paper, several Word Sense Disambiguation (henceforth WSD) methods developed for Polish that utilise plWordNet are discussed. Textual sense descriptions in the traditional lexicon can be compared with text contexts using Lesk’s algorithm in order to find best matching senses. In the case of a wordnet, lexico-semantic relations provide the main description of word senses. Thus, first, we adapted and applied to Polish a WSD method based on the Page Rank. According to it, text words are mapped on their senses in the plWordNet graph and Page Rank algorithm is run to find senses with the highest scores. The method presents results lower but comparable to those reported for English. The error analysis showed that the main problems are: fine grained sense distinctions in plWordNet and limited number of connections between words of different parts of speech. In the second approach plWordNet expanded with the mapping onto the SUMO ontology concepts was used. Two scenarios for WSD were investigated: two step disambiguation and disambiguation based on combined networks of plWordNet and SUMO. In the former scenario, words are first assigned SUMO concepts and next plWordNet senses are disambiguated. In latter, plWordNet and SUMO are combined in one large network used next for the disambiguation of senses. The additional knowledge sources used in WSD improved the performance. The obtained results and potential further lines of developments were discussed.


Sign in / Sign up

Export Citation Format

Share Document