SCE Jumping: Genetic Tool for Allelic Exchange in Bacteria

2004 ◽  
Vol 14 (1-2) ◽  
pp. 53-64 ◽  
Author(s):  
Sandy M Wong
2006 ◽  
Vol 74 (3) ◽  
pp. 1949-1953 ◽  
Author(s):  
Brian K. Janes ◽  
Scott Stibitz

ABSTRACT An improved genetic tool suitable for routine markerless allelic exchange in Bacillus anthracis has been constructed. Its utility was demonstrated by the introduction of insertions, deletions, and missense mutations on the chromosome and plasmid pXO1 of the Sterne strain of B. anthracis.


2009 ◽  
Vol 54 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Hassan Safi ◽  
Robert D. Fleischmann ◽  
Scott N. Peterson ◽  
Marcus B. Jones ◽  
Behnam Jarrahi ◽  
...  

ABSTRACT Mutations within codon 306 of the Mycobacterium tuberculosis embB gene modestly increase ethambutol (EMB) MICs. To identify other causes of EMB resistance and to identify causes of high-level resistance, we generated EMB-resistant M. tuberculosis isolates in vitro and performed allelic exchange studies of embB codon 406 (embB406) and embB497 mutations. In vitro selection produced mutations already identified clinically in embB306, embB397, embB497, embB1024, and embC13, which result in EMB MICs of 8 or 14 μg/ml, 5 μg/ml, 12 μg/ml, 3 μg/ml, and 4 μg/ml, respectively, and mutations at embB320, embB324, and embB445, which have not been identified in clinical M. tuberculosis isolates and which result in EMB MICs of 8 μg/ml, 8 μg/ml, and 2 to 8 μg/ml, respectively. To definitively identify the effect of the common clinical embB497 and embB406 mutations on EMB susceptibility, we created a series of isogenic mutants, exchanging the wild-type embB497 CAG codon in EMB-susceptible M. tuberculosis strain 210 for the embB497 CGG codon and the wild-type embB406 GGC codon for either the embB406 GCC, embB406 TGC, embB406 TCC, or embB406 GAC codon. These new mutants showed 6-fold and 3- to 3.5-fold increases in the EMB MICs, respectively. In contrast to the embB306 mutants, the isogenic embB497 and embB406 mutants did not have preferential growth in the presence of isoniazid or rifampin (rifampicin) at their MICs. These results demonstrate that individual embCAB mutations confer low to moderate increases in EMB MICs. Discrepancies between the EMB MICs of laboratory mutants and clinical M. tuberculosis strains with identical mutations suggest that clinical EMB resistance is multigenic and that high-level EMB resistance requires mutations in currently unknown loci.


2020 ◽  
Vol 17 (5) ◽  
pp. 551-551
Author(s):  
Drahomíra Faktorová ◽  
R. Ellen R. Nisbet ◽  
José A. Fernández Robledo ◽  
Elena Casacuberta ◽  
Lisa Sudek ◽  
...  

Fly ◽  
2014 ◽  
Vol 8 (4) ◽  
pp. 189-196 ◽  
Author(s):  
Ahmet Yavuz ◽  
Christopher Jagge ◽  
Jesse Slone ◽  
Hubert Amrein
Keyword(s):  

2021 ◽  
Vol 7 (7) ◽  
pp. 520
Author(s):  
Jianmin Fu ◽  
Nohelli E. Brockman ◽  
Brian L. Wickes

The transformation of Cryptococcus spp. by Agrobacterium tumefaciens has proven to be a useful genetic tool. A number of factors affect transformation frequency. These factors include acetosyringone concentration, bacterial cell to yeast cell ratio, cell wall damage, and agar concentration. Agar concentration was found to have a significant effect on the transformant number as transformants increased with agar concentration across all four serotypes. When infection time points were tested, higher agar concentrations were found to result in an earlier transfer of the Ti-plasmid to the yeast cell, with the earliest transformant appearing two h after A. tumefaciens contact with yeast cells. These results demonstrate that A. tumefaciens transformation efficiency can be affected by a variety of factors and continued investigation of these factors can lead to improvements in specific A. tumefaciens/fungus transformation systems.


Cell Reports ◽  
2019 ◽  
Vol 27 (13) ◽  
pp. 4003-4012.e6 ◽  
Author(s):  
Oriol Ros ◽  
Yvrick Zagar ◽  
Solène Ribes ◽  
Sarah Baudet ◽  
Karine Loulier ◽  
...  
Keyword(s):  

2017 ◽  
Vol 429 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Swati Banerjee ◽  
Rosa E. Mino ◽  
Elizabeth S. Fisher ◽  
Manzoor A. Bhat
Keyword(s):  

Aquaculture ◽  
2007 ◽  
Vol 272 ◽  
pp. S313-S314
Author(s):  
A.J. Teale ◽  
A.L. Archibald ◽  
J.E. Bron ◽  
D.W. Burt ◽  
D.F. Houlihan ◽  
...  

Science ◽  
1991 ◽  
Vol 252 (5002) ◽  
pp. 117-120 ◽  
Author(s):  
L. Deiss ◽  
A Kimchi

2009 ◽  
Vol 78 (3) ◽  
pp. 1383-1389 ◽  
Author(s):  
Gabriella M. Scandurra ◽  
Geoffrey W. de Lisle ◽  
Sonia M. Cavaignac ◽  
May Young ◽  
R. Pamela Kawakami ◽  
...  

ABSTRACT Mycobacterium avium subsp. paratuberculosis (basonym M. paratuberculosis) is the causative agent of paratuberculosis, a chronic enteritis of ruminants. To control the considerable economic effect that paratuberculosis has on the livestock industry, a vaccine that induces protection with minimal side effects is required. We employed transposon mutagenesis and allelic exchange to develop three potential vaccine candidates, which were then tested for virulence with macrophages, mice, and goats. All three models identified the WAg906 mutant as being the most attenuated, but some differences in the levels of attenuation were evident among the models when testing the other strains. In a preliminary mouse vaccine experiment, limited protection was induced by WAg915, as evidenced by a reduced bacterial load in spleens and livers 12 weeks following intraperitoneal challenge with M. paratuberculosis K10. While we found macrophages and murine models to be rapid and cost-effective alternatives for the initial screening of M. paratuberculosis mutants for attenuation, it appears necessary to do the definitive assessment of attenuation with a ruminant model.


Sign in / Sign up

Export Citation Format

Share Document