Ethics of Using Animal Models as Predicators of Human Response in Tissue Engineering

Author(s):  
Jessica M Falcon ◽  
James Karchner ◽  
Elizabeth Henning ◽  
Robert Mauck ◽  
Nancy Pleshko
2021 ◽  
Vol 71 ◽  
pp. 101515
Author(s):  
Antoine Berbéri ◽  
Mohammad Fayyad-kazan ◽  
Sara Ayoub ◽  
Rita Bou Assaf ◽  
Joseph Sabbagh ◽  
...  

2010 ◽  
pp. 131-154 ◽  
Author(s):  
Daniel A. W. Oortgiesen ◽  
Gert J. Meijer ◽  
Rob B. M. de Vries ◽  
X. Frank Walboomers ◽  
John A. Jansen

2013 ◽  
Vol 80 (1) ◽  
pp. 11-19
Author(s):  
Gigliola Sica

The therapeutic use of stem cells and tissue engineering techniques are emerging in urology. Here, stem cell types, their differentiating potential and fundamental characteristics are illustrated. The cancer stem cell hypothesis is reported with reference to the role played by stem cells in the origin, development and progression of neoplastic lesions. In addition, recent reports of results obtained with stem cells alone or seeded in scaffolds to overcome problems of damaged urinary tract tissue are summarized. Among others, the application of these biotechnologies in urinary bladder, and urethra are delineated. Nevertheless, apart from the ethical concerns raised from the use of embryonic stem cells, a lot of questions need to be solved concerning the biology of stem cells before their widespread use in clinical trials. Further investigation is also required in tissue engineering utilizing animal models.


2017 ◽  
Vol 23 (11) ◽  
pp. 641-642 ◽  
Author(s):  
Jorge A. Piedrahita ◽  
J. Koudy Williams

2012 ◽  
Vol 24 (1) ◽  
pp. 287
Author(s):  
S. J. Hollister ◽  
M. B. Wheeler ◽  
S. E. Feinberg ◽  
W. L. Murphy

The translation of bone tissue engineering (BTE) research to clinical use has been absymal1. Outside of bone void filler biomaterials, only Bone Morphogenetic Protein 2 (BMP2) has made significant inroads to clinical practice, and even BMP2 use has been associated with significant complications including death, dysphagia, and ectopic bone formation. The dearth of BTE products can be attributed to two main causes: (1) the need to develop BTE systems, that successfully integrate scaffolds, growth factors like BMP2 and cells and (2) the need to adapt and implement such systems for a wide variety of clinical indications in CranioMaxilloFacial (CMF), Spine and Orthopedic Surgery. Of course, to fully develop BTE systems (Issue 1) and adapt them to realistic clinical indications, we must be able to test such systems in bone defects that are as close to the human situation as possible. Thus, the use of domestic large animals for bone tissue engineering is critical, as these animals provide challenges in both defect volume and functional loading that can mimic the human situation. In addition, FDA approval for BTE products either through a 510K or IDE/IND/PMA pathway requires the use of a large pre-clinical animal model. However, despite this need, only approximately 60 large animal bone tissue-engineering studies have been published in the past 10 years. Furthermore, NIH has funded only 8% of these studies, and of the 17 bone tissue engineering studies supported by NIH in 2010, only three utilized a large animal model, and none of these used an animal larger than a rabbit. Clearly, increased translation and regulatory approval of BTE therapies will require greater testing in large animal models. We will discuss the current dearth of relevant pre-clinical studies in BTE, and present our work addressing these issues by developing BTE systems (integrated scaffold, growth factor and stem-cell constructs) and testing these systems for realistic clinical applications using the Yorkshire and other swine species as a large pre-clinical animal model. We will detail our work in developing BTE systems for CMF reconstruction and spine fusion in the swine model. Reference Hollister S. J. and Murphy W. L. Scaffold translation: barriers between concept and clinic. Tissue Eng. B. (in press).


RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18668-18680 ◽  
Author(s):  
Hugh H. Chan ◽  
Connor A. Wathen ◽  
Ming Ni ◽  
Shuangmu Zhuo

We report the facilitation of stem cell therapy in stroke by tissue engineering and applications of biomaterials.


2017 ◽  
Vol 23 (12) ◽  
pp. 900-925 ◽  
Author(s):  
Karim M. Fawzy El-Sayed ◽  
Christof E. Dörfer

Oral Diseases ◽  
2015 ◽  
Vol 21 (5) ◽  
pp. 583-592 ◽  
Author(s):  
Y Zhang ◽  
X Li ◽  
T Chihara ◽  
T Mizoguchi ◽  
A Hori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document