cell therapies
Recently Published Documents


TOTAL DOCUMENTS

2141
(FIVE YEARS 1025)

H-INDEX

57
(FIVE YEARS 19)

Author(s):  
Alessandra Rodriguez y Baena ◽  
Andrea Casasco ◽  
Manuela Monti

AbstractOne of the most exciting advances in life science research is the development of 3D cell culture systems to obtain complex structures called organoids and spheroids. These 3D cultures closely mimic in vivo conditions, where cells can grow and interact with their surroundings. This allows us to better study the spatio-temporal dynamics of organogenesis and organ function. Furthermore, physiologically relevant organoids cultures can be used for basic research, medical research, and drug discovery. Although most of the research thus far focuses on the development of heart, liver, kidney, and brain organoids, to name a few, most recently, these structures were obtained using dental stem cells to study in vitro tooth regeneration. This review aims to present the most up-to-date research showing how dental stem cells can be grown on specific biomaterials to induce their differentiation in 3D. The possibility of combining engineering and biology principles to replicate and/or increase tissue function has been an emerging and exciting field in medicine. The use of this methodology in dentistry has already yielded many interesting results paving the way for the improvement of dental care and successful therapies. Graphical abstract


2022 ◽  
pp. 107815522110735
Author(s):  
James A. Davis ◽  
Abigail Shockley ◽  
Hamza Hashmi

Objective Multiple myeloma, a plasma cell neoplasm is the second most common hematological malignancy in the United States. Despite significant advances in treatment armamentarium over the last decade, multiple myeloma remains an incurable malignancy. B-cell maturation antigen (BCMA) is an antigen expressed on the surface on plasma cells that can be targeted by novel mechanisms of action including antibody-drug conjugates (ADCs), bispecific T-cell engagers, and chimeric antigen receptor (CAR) T-cell therapy. This review summarizes the clinical application and development of approved and investigational immunotherapies targeting BCMA. Data Sources A search of the PubMed database was conducted using the following search terms: BCMA, CAR T, myeloma, belantamab mafodotin, and bispecific. Ongoing clinical trials, as well as abstracts from ASH and ASCO evaluating the efficacy and safety of novel agents targeting BCMA were evaluated. Prescribing information was also reviewed. Data Summary Since the discovery of BCMA as a target for myeloma, researchers have developed antibody-drug conjugates, bispecific T-cell engagers, and CAR T-cell therapies as novel treatment modalities for myeloma patients. Belantamab mafodotin and idecabtagene vicleucel represent currently available therapies and ongoing trials have demonstrated the efficacy and safety of bispecifics and other BCMA targeting therapies. Conclusion BCMA targeting antibody drug conjugates, bispecific T-cell engagers, and CAR T-cell therapies have demonstrated clinical activity in myeloma patients and represent novel therapies in multiple myeloma treatment paradigm.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ting-Yung Kuo ◽  
Chao-Cheng Huang ◽  
Shyh-Jou Shieh ◽  
Yu-Bin Wang ◽  
Ming-Jen Lin ◽  
...  

AbstractAn appropriate animal wound model is urgently needed to assess wound dressings, cell therapies, and pharmaceutical agents. Minipig was selected owing to similarities with humans in body size, weight, and physiological status. Different wound sizes (0.07–100 cm2) were created at varying distances but fail to adequately distinguish the efficacy of various interventions. We aimed to resolve potential drawbacks by developing a systematic wound healing system. No significant variations in dorsal wound closure and contraction were observed within the thoracolumbar region between boundaries of both armpits and the paravertebral region above rib tips; therefore, Lanyu pigs appear suitable for constructing a reliable dorsal wound array. Blood flow signals interfered with inter-wound distances ˂ 4 cm; a distance > 4 cm is therefore recommended. Wound sizes ≥ 4 cm × 4 cm allowed optimal differentiation of interventions. Partial- (0.23 cm) and full-thickness (0.6 cm) wounds showed complete re-epithelialization on days 13 and 18 and strongest blood flow signals at days 4 and 11, respectively. Given histological and tensile strength assessments, tissue healing resembling normal skin was observed at least after 6 months. We established some golden standards for minimum wound size and distance between adjacent wounds for effectively differentiating interventions in considering 3R principles.


Author(s):  
Stefania Bramanti ◽  
Matteo Carrabba ◽  
Alice Di Rocco ◽  
Elena Fabris ◽  
Luca Gastaldi ◽  
...  

Introduction: Chimeric antigen receptor (CAR) T-cell therapies are novel immunotherapies for the treatment of hematologic malignancies. They are administered in specialized centers by a multidisciplinary team and require the careful coordination of all steps involved in manufacturing and using cellular therapies. The Maturity Model (MM) is a tool developed and used for assessing the effectiveness of a variety of activities. In healthcare, it may assist clinicians in the gradual improvement of patient management with CAR T-cell therapy and other complex treatments. Methods: The START CAR-T project was initiated to investigate the potential of a MM in the setting of CAR T-cell therapy. Four Italian clinics participated in the creation of a dedicated MM. Following the development and test of this MM, its validity and generalizability were further tested with a questionnaire submitted to 18 Italian centers. Results: The START CAR-T MM assessed the maturity level of clinical sites, with a focus on organization, process, and digital support. For each area, the model defined four maturity steps, and indicated the actions required to evolve from a basic to an advanced status. The application of the MM to 18 clinical sites provided a description of the maturity level of Italian centers with regard to the introduction of CAR T-cell therapy. Conclusion: The START CAR-T MM appears to be a useful and widely applicable tool. It may help centers optimize many aspects of CAR T-cell therapy and improve patient access to this novel treatment option.


Author(s):  
N. Zozaya ◽  
J. Villaseca ◽  
F. Abdalla ◽  
M. A. Calleja ◽  
J. L. Díez-Martín ◽  
...  

AbstractCAR-T cell therapy represents a therapeutic revolution in the prognosis and treatment of patients with certain types of hematological cancer. However, they also pose new challenges in the healthcare, regulatory and financial fields. The aim of the RET-A project was to undertake a strategic reflection on the management of CAR-T therapies within the Spanish National Health System, to agree on recommendations that will help to better deal with the new context introduced by these cell therapies in the present and in the future. This think tank involved 40 key agents and opinion leaders. The experts identified three great challenges for implementing advanced therapies in Spain: therapeutic individualisation, with a multidisciplinary approach; acceleration of access times, by minimizing bureaucracy; and increase in the number of centers qualified to manage the CAR-T therapies in the NHS. The experts agreed on the ideal criteria for designating those qualified centers. They also agreed on a comprehensive CAR-T care pathway with the timings and roles which would ideally be involved in each part of the process.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yuhua Gao ◽  
Weijun Guan ◽  
Chunyu Bai

In this study, we isolated and cultured pancreatic ductal cells from canines and revealed the possibility for using them to differentiate into functional pancreatic beta cells in vitro. Passaged pancreatic ductal cells were induced to differentiate into beta-like pancreatic islet cells using a mixture of induced factors. Differentiated pancreatic ductal cells were analyzed based on intracellular insulin granules using transmission electron microscopy, the expression of insulin and glucagon using immunofluorescence, and glucose-stimulated insulin secretion using ELISA. Our data revealed that differentiated pancreatic ductal cells not only expressed insulin and glucagon but also synthesized insulin granules and secreted insulin at different glucose concentrations. Our study might assist in the development of effective cell therapies for the treatment of type 1 diabetes mellitus in dogs.


2022 ◽  
Vol 12 ◽  
Author(s):  
Marie-Anne Morren ◽  
Eric Legius ◽  
Fabienne Giuliano ◽  
Smail Hadj-Rabia ◽  
Daniel Hohl ◽  
...  

Genodermatoses are rare inherited skin diseases that frequently affect other organs. They often have marked effects on wellbeing and may cause early death. Progress in molecular genetics and translational research has unravelled many underlying pathological mechanisms, and in several disorders with high unmet need, has opened the way for the introduction of innovative treatments. One approach is to intervene where cell-signaling pathways are dysregulated, in the case of overactive pathways by the use of selective inhibitors, or when the activity of an essential factor is decreased by augmenting a molecular component to correct disequilibrium in the pathway. Where inflammatory reactions have been induced by a genetically altered protein, another possible approach is to suppress the inflammation directly. Depending on the nature of the genodermatosis, the implicated protein or even on the particular mutation, to correct the consequences or the genetic defect, may require a highly personalised stratagem. Repurposed drugs, can be used to bring about a “read through” strategy especially where the genetic defect induces premature termination codons. Sometimes the defective protein can be replaced by a normal functioning one. Cell therapies with allogeneic normal keratinocytes or fibroblasts may restore the integrity of diseased skin and allogeneic bone marrow or mesenchymal cells may additionally rescue other affected organs. Genetic engineering is expanding rapidly. The insertion of a normal functioning gene into cells of the recipient is since long explored. More recently, genome editing, allows reframing, insertion or deletion of exons or disruption of aberrantly functioning genes. There are now several examples where these stratagems are being explored in the (pre)clinical phase of therapeutic trial programmes. Another stratagem, designed to reduce the severity of a given disease involves the use of RNAi to attenuate expression of a harmful protein by decreasing abundance of the cognate transcript. Most of these strategies are short-lasting and will thus require intermittent life-long administration. In contrast, insertion of healthy copies of the relevant gene or editing the disease locus in the genome to correct harmful mutations in stem cells is more likely to induce a permanent cure. Here we discuss the potential advantages and drawbacks of applying these technologies in patients with these genetic conditions. Given the severity of many genodermatoses, prevention of transmission to future generations remains an important goal including offering reproductive choices, such as preimplantation genetic testing, which can allow selection of an unaffected embryo for transfer to the uterus.


2022 ◽  
pp. 201-210
Author(s):  
Sevim Kahraman ◽  
Danielle Diegisser ◽  
Ercument Dirice

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yuan Yuan ◽  
Huixia Ren ◽  
Yanjun Li ◽  
Shanshan Qin ◽  
Xiaojing Yang ◽  
...  

AbstractiCasp9 suicide gene has been widely used as a promising killing strategy in various cell therapies. However, different cells show significant heterogeneity in response to apoptosis inducer, posing challenges in clinical applications of killing strategy. The cause of the heterogeneity remains elusive so far. Here, by simultaneously monitoring the dynamics of iCasp9 dimerization, Caspase3 activation, and cell fate in single cells, we found that the heterogeneity was mainly due to cell-to-cell variability in initial iCasp9 expression and XIAP/Caspase3 ratio. Moreover, multiple-round drugging cannot increase the killing efficiency. Instead, it will place selective pressure on protein levels, especially on the level of initial iCasp9, leading to drug resistance. We further show this resistance can be largely eliminated by combinatorial drugging with XIAP inhibitor at the end, but not at the beginning, of the multiple-round treatments. Our results unveil the source of cell fate heterogeneity and drug resistance in iCasp9-mediated cell death, which may enlighten better therapeutic strategies for optimized killing.


Sign in / Sign up

Export Citation Format

Share Document