Numerical Optimization of Curved Vertical Walls in Natural Convection Flow Fields by the Entropy Generation Minimization Method

2011 ◽  
Vol 42 (3) ◽  
pp. 285-299 ◽  
Author(s):  
O. Nourani Zonouz ◽  
Mehdi Salmanpour
1994 ◽  
Vol 116 (2) ◽  
pp. 400-408 ◽  
Author(s):  
R. A. W. M. Henkes ◽  
C. J. Hoogendoorn

By numerically solving the Reynolds equations for air and water in a square cavity, with differentially heated vertical walls, at Rayleigh numbers up to 1020 the scalings of the turbulent natural convection flow are derived. Turbulence is modeled by the standard k–ε model and by the low-Reynolds-number k–ε models of Chien and of Jones and Launder. Both the scalings with respect to the Rayleigh number (based on the cavity size H) and with respect to the local height (y/H) are considered. The scalings are derived for the inner layer, outer layer, and core region. The Rayleigh number scalings are almost the same as the scalings for the natural convection boundary layer along a hot vertical plate. The scalings found are almost independent of the k–ε model used.


2020 ◽  
Vol 32 ◽  
pp. 101834
Author(s):  
Mehdi Ghalambaz ◽  
S.A.M. Mehryan ◽  
Masoud Mozaffari ◽  
Ahmad Hajjar ◽  
Mohamad El Kadri ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dolat khan ◽  
Poom Kumam ◽  
Wiboonsak Watthayu

AbstractThis article focused on the comparative study of entropy generation for natural convection flow of the newly proportional Caputo hybrid and Atangana baleanu fractional derivative. The governing equation is formed as the set of partial differential equations with the physical boundary conditions. The report of entropy generation is investigated for the first time for proportional–Caputo hybrid model and comparison are sorts out with generalized Atangana baleanu fractional derivative. The Bejan number is also compared for the mention fractional derivatives. Graphs show the impact of various factors on the minimization and maximizing of entropy production. The newly proportional Caputo hybrid operator has a good memory effect rather than Atangana baleanu fractional operator.


1994 ◽  
Vol 262 ◽  
pp. 325-351 ◽  
Author(s):  
M. R. Ravi ◽  
R. A. W. M. Henkes ◽  
C. J. Hoogendoorn

Natural-convection flow in an enclosure with adiabatic horizontal walls and isothermal vertical walls maintained at a fixed temperature difference has been investigated. At high values of the natural-convection parameter, the Rayleigh number, a recirculating pocket appears near the corners downstream of the vertical walls, and the flow separates and reattaches at the horizontal walls in the vicinity of this recirculation. There is also a considerable thickening of the horizontal layer. In some previous studies by different authors, this corner flow was considered to be caused by an internal hydraulic jump, and the jump theory was used to predict bifurcation of the steady flow into periodic flow. The present work examines the corner phenomenon closely to decide if it is indeed caused by a hydraulic jump. The results of the analysis reveal the oversimplification of the problem made in the previous studies: there is no connection of the corner phenomenon with a hydraulic jump. The separation of flow at the ceiling is not a feature of hydraulic jumps, and the essential energy loss associated with hydraulic jumps is not observed in the corner flow. It is shown that the corner structure is caused by thermal effects. Owing to the temperature undershoots in vertical boundary layer, which are known to be caused by the stable thermal stratification of the core, relatively cold fluid reaches the upper corner. This cold fluid detaches from the ceiling like a plume at high Rayleigh numbers, and causes the separation and recirculation.


Sign in / Sign up

Export Citation Format

Share Document