scholarly journals A novel comparative case study of entropy generation for natural convection flow of proportional-Caputo hybrid and Atangana baleanu fractional derivative

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dolat khan ◽  
Poom Kumam ◽  
Wiboonsak Watthayu

AbstractThis article focused on the comparative study of entropy generation for natural convection flow of the newly proportional Caputo hybrid and Atangana baleanu fractional derivative. The governing equation is formed as the set of partial differential equations with the physical boundary conditions. The report of entropy generation is investigated for the first time for proportional–Caputo hybrid model and comparison are sorts out with generalized Atangana baleanu fractional derivative. The Bejan number is also compared for the mention fractional derivatives. Graphs show the impact of various factors on the minimization and maximizing of entropy production. The newly proportional Caputo hybrid operator has a good memory effect rather than Atangana baleanu fractional operator.

2018 ◽  
Vol 14 (5) ◽  
pp. 1064-1081
Author(s):  
Basant Kumar Jha ◽  
Michael O. Oni

PurposeThe purpose of this paper is to investigate the impact of time-periodic thermal boundary conditions on natural convection flow in a vertical micro-annulus.Design/methodology/approachAnalytical solution in terms of Bessel’s function and modified Bessel’s function of order 0 and 1 is obtained for velocity, temperature, Nusselt number, skin friction and mass flow rate.FindingsIt is established that the role of Knudsen number and fluid–wall interaction parameter is to decrease fluid temperature, velocity, Nusselt number and skin friction.Research limitations/implicationsNo laboratory practical or experiment was conducted.Practical implicationsCooling device in electronic panels, card and micro-chips is frequently cooled by natural convection.Originality/valueIn view of the amount of works done on natural convection in microchannel, it becomes interesting to investigate the effect that time-periodic heating has on natural convection flow in a vertical micro-annulus. The purpose of this paper is to examine the impact of time-periodic thermal boundary conditions on natural convection flow in a vertical micro-annulus.


Author(s):  
Basant K Jha ◽  
Michael O Oni

This paper investigates the impact of asymmetric heating or cooling of cylinder surfaces on transient natural convection flow in between vertical concentric cylinders. The outer surface of inner cylinder is assumed to be heated with temperature greater than the cooled inner surface of the outer cylinder. Closed form expressions are obtained by using the well-known Laplace transform technique to solve the governing partial differential equations in Laplace domain, whereas the Riemann-sum approximation is used to invert to time domain. Results show that the role of buoyancy force distribution parameter is to increase temperature, velocity, skin-friction and volume flow rate for both air and water. Further, reverse flow formation can be controlled by using suitable buoyancy force distribution parameter.


2020 ◽  
Vol 32 ◽  
pp. 101834
Author(s):  
Mehdi Ghalambaz ◽  
S.A.M. Mehryan ◽  
Masoud Mozaffari ◽  
Ahmad Hajjar ◽  
Mohamad El Kadri ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Harun Zontul ◽  
Hudhaifa Hamzah ◽  
Besir Sahin

Purpose This paper aims to exhibit a numerical study to analyze the influence of a periodic magnetic source on free convection flow and entropy generation of a ferrofluid in a baffled cavity. In this study, ferrofluid nanofluid was selected due to its ability to image magnetic domain structures within the cavity. The non-uniform magnetic source is considered as a sinusoidal distribution in the vertical direction. Design/methodology/approach The finite volume technique is used to evaluate the steady two-dimensional partial differential equations that govern the flow with its corresponding boundary conditions. Findings The obtained results indicate that a significant increase in the average Nusselt number can be achieved with the use of the periodic magnetic source instead of a uniform case. In addition, the effectiveness of the adiabatic baffle notably depends on its position and Rayleigh number. Regardless of the values of period and Hartmann numbers, the periodic magnetic source has a higher entropy generation and lower Bejan number than the uniform magnetic source. Originality/value The novelty of this research lies in applying a periodic magnetic source on the natural convection of ferrofluids in a baffled cavity.


Author(s):  
Basant K. Jha ◽  
Peter B. Malgwi

AbstractThis study examines the impact of induced magnetic field and Hall current on steady fully developed hydromagnetic natural convection flow in a micro-channel under the action of an inclined magnetic field. The mathematical model responsible for the present physical situation is presented in a dimensionless form under relevant boundary conditions. The governing coupled equations are solved exactly. A parametric study of some physical parameters is conducted and a representative set of numerical results for the velocity field, the induced magnetic field, induced current density, volume flow rate, and skin friction on the micro-channel surfaces are illustrated graphically. It is observed that magnetic field inclination plays an important role in flow formation inside the micro-channel. Numerical computation reveals that the increase in inclination angle reduces the hydromagnetic drag leading to enhancement in primary fluid velocity, while the impact is just converse on the secondary fluid velocity. Furthermore, the increase in Hall current parameter increases the magnitude of the fluid velocity in both primary and secondary flow directions.


Sign in / Sign up

Export Citation Format

Share Document