NUMERICAL MODELING OF PROCESSES IN A PLASMA REACTOR FOR CONVERSION OF HYDROCARBONS

Author(s):  
Aleksandr Liavonchyk ◽  
D. Morozov ◽  
Vasili Sauchyn ◽  
Hr. Dalholenka
2018 ◽  
Vol 20 (1) ◽  
pp. 73
Author(s):  
B.A. Urmashev ◽  
A. Issakhov

The paper presents a numerical simulation of the propagation of the direct-flow temperature plasma reactor, which is solved by the compressible Navier–Stokes equations, numerical algorithm based on SIMPLE algorithm that are approximated by finite volume method. In the numerical solution of the equation system can be divided into four stages. The first stage the transfer of momentum carried out only by convection and diffusion. The intermediate velocity field is solved by the solution of the differential velocity gradient equation, the Green-Gauss Cell Based scheme is used. The second stage for the pressure field, PRESTO numerical scheme is applied. In the third step it is assumed that the transfer is carried out only by the pressure gradient. The fourth step of the equation is solved for the temperature transport equation as well as the momentum equations by the Green-Gauss Cell Based scheme is used. The algorithm is parallelized on high-performance systems. With this numerical algorithm numerical results of temperature distribution in a continuous-flow plasma reactor was obtained. Numerical modeling allows us to give a more precise description of the processes that have been identified or studied theoretically by laboratory methods, and can reveal new physical phenomena processes that are not yet available, seen in experimental studies. Simulation results show that the constructed numerical model provides the necessary accuracy and stability, which should accurately describe the process during the time interval.


2007 ◽  
Author(s):  
T. Campbell ◽  
B. de Sonneville ◽  
L. Benedet ◽  
D. J. W. Walstra ◽  
C. W. Finkl

Author(s):  
D.S. Rakisheva ◽  
◽  
B.G. Mukanova ◽  
I.N. Modin ◽  
◽  
...  

Numerical modeling of the problem of dam monitoring by the Electrical Resistivity Tomography method is carried out. The mathematical model is based on integral equations with a partial Fourier transform with respect to one spatial variable. It is assumed that the measurement line is located across the dam longitude. To approximate the shape of the dam surface, the Radial Basic Functions method is applied. The influence of locations of the water-dam, dam-basement, basement-leakage boundaries with respect to the sounding installation, which is partially placed under the headwater, is studied. Numerical modeling is carried out for the following varied parameters: 1) water level at the headwater; 2) the height of the leak; 3) the depth of the leak; 4) position of the supply electrode; 5) water level and leaks positions are changing simultaneously. Modeling results are presented in the form of apparent resistivity curves, as it is customary in geophysical practice.


2015 ◽  
Vol 35 ◽  
pp. 232-235 ◽  
Author(s):  
Leonardo Piccinini ◽  
Paolo Fabbri ◽  
Marco Pola ◽  
Enrico Marcolongo ◽  
Alessia Rosignoli

Sign in / Sign up

Export Citation Format

Share Document