RECENT DEVELOPMENTS IN HEAT EXCHANGERS. International Seminar 1972

Author(s):  
Ernst U. Schluender
2018 ◽  
Vol 229 ◽  
pp. 778-803 ◽  
Author(s):  
P. Vivekh ◽  
M. Kumja ◽  
D.T. Bui ◽  
K.J. Chua

Author(s):  
Merrill A. Wilson ◽  
Charles Lewinsohn ◽  
James Cutts ◽  
Yitung Chen ◽  
Valery Ponyavin

The recent developments in the energy industry have kindled renewed interest in producing energy more efficiently. This has motivated the development of higher temperature cycles and their associated equipment. In this paper we will discuss several design configurations coupled with the inherent properties of preferred ceramic materials to assess the viability and design reliability of ceramic heat exchangers for next generation high temperature heat exchangers. These analyses have been extended to conceptually compare the traditional shell and tube heat exchanger with shell and plate heat exchangers. These analyses include hydrodynamic, heat transfer, mechanical stress and reliability models applicable to an Intermediate Heat Exchanger (IHX) and Process Coupling Heat Exchangers. It was found that ceramic micro-channel heat exchanger designs proved to have the greatest reliability due to their inherent mechanical properties, minimal thermo-mechanical stresses while improving the performance efficiency in a compact footprint.


2018 ◽  
Vol 11 ◽  
Author(s):  
Michael Ohadi ◽  
Xiang Zhang ◽  
Hadi Keramati ◽  
Martinus Arie ◽  
Farah Singer ◽  
...  

2021 ◽  
Vol 143 (10) ◽  
Author(s):  
Xiaobing Liu ◽  
Jeffrey D. Spitler ◽  
Ming Qu ◽  
Liang Shi

Abstract Ground source (geothermal) heat pumps (GSHPs) can meet the thermal demands of buildings in an energy-efficient manner. The current high installation costs and long payback period limit the attractiveness of GSHP installation in the United States. Vertical borehole ground heat exchangers (VBGHEs), which are commonly used in GSHP systems, contribute most to the cost premium of GSHPs. Reducing the cost of VBGHEs could help increase market penetration of GSHP systems. This paper reviews recent developments for VBGHEs, including improvements in borehole heat transfer and borehole field layout, integration with thermal energy storage, and new design tools. Improvements in the borehole design and materials are more likely to be justified when the ground has high thermal conductivity. Integrating thermal energy storage can provide additional value to the GSHP system, especially when flexible electric demand at buildings becomes more valuable. Advanced design tools for VBGHEs that account for the thermal response of irregularly shaped borehole fields and that are more closely integrated with whole-building energy simulation programs may facilitate more innovations and optimization of GSHP system designs.


Sign in / Sign up

Export Citation Format

Share Document