NATURAL CONVECTIVE HEAT TRANSFER FROM A VERTICAL ISOTHERMAL HIGH ASPECT RATIO RECTANGULAR CYLINDER WITH AN EXPOSED UPPER SURFACE MOUNTED ON A FLAT ADIABATIC BASE

Author(s):  
Patrick H. Oosthuizen ◽  
Abdulrahim Kalendar ◽  
Almounir Alkhazmi
1991 ◽  
Vol 113 (3) ◽  
pp. 604-611 ◽  
Author(s):  
C. Y. Soong ◽  
S. T. Lin ◽  
G. J. Hwang

The paper presents an experimental study of convective heat transfer in radially rotating isothermal rectangular ducts with various height and width aspect ratios. The convective heat transfer is affected by secondary flows resulting from Coriolis force and the buoyancy flow, which is in turn due to the centrifugal force in the duct. The growth and strength of the secondary flow depend on the rotational Reynolds number; the effect of the buoyancy flow is characterized by the rotational Rayleigh number. The aspect ratio of the duct may affect the secondary flow and the buoyancy flow, and therefore is also a critical parameter in the heat transfer mechanism. In the present work the effects of the main flow, the rotational speed, and the aspect ratio γ on heat transfer are subjects of major interest. Ducts of aspect ratios γ=5, 2, 1, 0.5, and 0.2 at rotational speed up to 3000 rpm are studied. The main flow Reynolds number ranges from 700 to 20,000 to cover the laminar, transitional, and turbulent flow regimes in the duct flow. Test data and discussion are presented.


Author(s):  
Patrick H. Oosthuizen

Mixed convective heat transfer from an isothermal cylinder with a rectangular cross-section and a relatively large height-to-width ratio has been numerically studied. The axis of the cylinder is horizontal with the longer sides of the rectangular cylinder being vertical. There is a vertical forced flow over the cylinder. The flow conditions considered are such that in general mixed forced and natural convective flow exists. Both the case where the buoyancy forces act in the same direction as the forced flow (assisting flow) and the case where they act in the opposite direction to the forced flow (opposing flow) have been considered. The flow has been assumed to be two-dimensional and the Boussinesq approximation has been adopted. Attention has been restricted to the flow of air and results have therefore been obtained for a Prandtl number of 0.74. The flow conditions considered are such that laminar or turbulent flow can exist. The main attention is this work has been directed at determining the effect of the flow parameters on the mean heat transfer rate from the cylinder and on determining the conditions under which the flow can be assumed to be forced convective and under which it can be assumed to be natural convective.


2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Pamela Vocale ◽  
Gian Luca Morini ◽  
Marco Spiga

In this work, hydrodynamically and thermally fully developed gas flow through elliptical microchannels is numerically investigated. The Navier–Stokes and energy equations are solved by considering the first-order slip flow boundary conditions and by assuming that the wall heat flux is uniform in the axial direction, and the wall temperature is uniform in the peripheral direction (i.e., H1 boundary conditions). To take into account the microfabrication of the elliptical microchannels, different heated perimeter lengths are analyzed along the microchannel wetted perimeter. The influence of the cross section geometry on the convective heat transfer coefficient is also investigated by considering the most common values of the elliptic aspect ratio, from a practical point of view. The numerical results put in evidence that the Nusselt number is a decreasing function of the Knudsen number for all the considered configurations. On the contrary, the role of the cross section geometry in the convective heat transfer depends on the thermal boundary condition and on the rarefaction degree. With the aim to provide a useful tool for the designer, a correlation that allows evaluating the Nusselt number for any value of aspect ratio and for different working gases is proposed.


Author(s):  
Shawn Siroka ◽  
Melissa Shallcross ◽  
Stephen Lynch

Cylindrical pins, often called pin fins, are used to create turbulence and promote convective heat transfer within many devices, ranging from computer heat sinks to the trailing edge of jet engine turbine blades. Previous experiments have measured the time-averaged heat transfer over a single pin as well as the flow fields around the pin. However, in this study, focus is placed on the instantaneous heat flux around the centerline of a low aspect-ratio pin within an array. Time-mean and unsteady convective heat flux are measured around the circumference of an isothermal heated test pin via a microsensor located at the surface. The pin is positioned at various locations within a staggered array in a large-scale wind tunnel. Reynolds numbers from 3,000 to 50,000, based on pin diameter and maximum velocity between pins, are tested with a streamwise spacing of 1.73 diameters between rows, a spanwise spacing of 2 diameters, and a pin height of 1 diameter. The time-averaged and standard deviation of convective heat flux around the pin is higher over most of the pin surface for pins in downstream row positions of an array relative to the first row pin, except in the wake which has similar levels for all rows. For a given pin position in the array, as the Reynolds number increases, the point of minimum heat transfer moves circumferentially upstream on the pin fin, corresponding to earlier transition of the pin boundary layer. Also, for a given Reynolds number, the minimum heat transfer point on the pin circumference moves upstream for pins further into the array, due to the high turbulence levels within the array which cause early transition. For a single pin row with no downstream pins, heat transfer fluctuations are very high on the backside of the pin due to the significant unsteadiness in the pin wake, but heat transfer fluctuations are suppressed for a pin with downstream rows due to the confining effects of the close spacing. The results from this study can be used to design pin-fin arrays that take advantage of unsteadiness and increase overall convective heat transfer for various industry components.


Sign in / Sign up

Export Citation Format

Share Document