Simulation of Single Bed Adsorption Refrigeration System Driven by Solar Energy

Author(s):  
A Asif Sha ◽  
V Baiju
2014 ◽  
Vol 700 ◽  
pp. 37-41
Author(s):  
A Min Ji ◽  
Tian Tian ◽  
Bo Ning Tang

This paper discusses the importance of per-cooling vegetable and fruit, establishes a mathematical model of the solar adsorption refrigeration system collector bed. It applies activated carbon - methanol as working pairs, takes solar vacuum tube-water cooled collector bed for refrigerating, adsorption temperature and adsorption rate versus time are calculated , draw the corresponding curve figure. Analyses solar adsorption refrigeration system performance and puts forward the improvement direction.


2018 ◽  
Vol 21 (4) ◽  
pp. 523-531
Author(s):  
Wissam H. Khaleel ◽  
Abdul Hadi N. Khalifa ◽  
Hilal Tareq Abdulazeez

The depleting of the conventional sources of energy and the excess use of HCF components lead to the need for new techniques both for conservation of energy sources for the future and for decreasing the its harmful effects on the environment. This study investigated the adsorption capabilities of activated carbon. The adsorption of methanol on this substance was tested for their application in the adsorption refrigeration system based on solar energy. Adsorption refrigeration system has been designed and manufactured with the energy source being solar energy. Methanol/activated carbon pairs have been used in experiments. The present work focused on the performance of the adsorption refrigeration system considering the temperature attained in the evaporator and the cooled spaced cabinet. The amounts of activated carbon used was (8 kg), while the amount of methanol were (1, 1.25, and 1.5) kg. The experiments were done in different days of the year. The amount of adsorption of methanol (as a result of decreasing the evaporator and cooled spaced temperature) was found to depend on the generator pressure and its increase as the primary generator pressure decreases. The best mass of methanol used was (1 kg) which give the lowest temperature obtained at the evaporative surface was ( 3.4 oC ) at the day ( 4/4/2017 ). The results  shown that even in cloudy days there is a benefit from using such a system because the temperature attained is enough to start the adsorption process. The lowest temperature obtained at the evaporative surface was (3.4 oC) at the day (4/4/2017) for methanol mass of (1 kg) at an opening time of the valve between the evaporator and the generator (9:30am). The increase of methanol amount used in the experiment led to a good decrease in temperature attained in cooled spaced, but this is related to the time of connecting the evaporator and generator.


2014 ◽  
Vol 953-954 ◽  
pp. 66-73
Author(s):  
Yan Ling Liu ◽  
Xue Zeng Shi ◽  
Yuan Yu

This paper presents the design of a solar/gas driving double effect LiBr-H2O absorption system. In order to use solar energy more efficiently, a new kind of solar/gas driving double effect LiBr-H2O absorption system is designed. In this system, the high-pressure generator is driven by conventional energy, natural gas, and solar energy together with water vapor generated in the high-pressure generator, which supplies energy to the low-pressure generator for a double effect absorption system. Simulation results illustrate that this kind of system is feasible and economical. Economic evaluation of several systems is also given in this paper in order to get a clear knowledge of the energy consumption of the system.


Sign in / Sign up

Export Citation Format

Share Document