Experimental Investigation of Ultrasonic Effect on a Nanofluid Oscillating Heat Pipe

Author(s):  
Nannan Zhao ◽  
Benwei Fu ◽  
Hongbin Ma
Author(s):  
Nannan Zhao ◽  
Benwei Fu ◽  
Dianli Zhao ◽  
Hongbin Ma

The ultrasonic effect on the oscillating motion and heat transfer in an oscillating heat pipe (OHP) containing acetone was investigated experimentally. The ultrasonic sound was applied to the evaporating section of the OHP by using electrically-controlled piezoelectric ceramics. The ultrasonic sound is used to generate and maintain the oscillating motion, and, thereby, heat transfer is enhanced. The heat pipe was tested with or without the ultrasonic sound. In addition, the effects of heat load, filling ratio, orientation, operating temperature, and input power from 15 W to 200 W were investigated. The experimental results demonstrate that ultrasonic sound can affect the oscillating motions and enhance the heat transfer performance of the acetone OHP. In particular, the application of the ultrasonic sound on an acetone OHP can significantly reduce the thermal resistance of the acetone OHP and enhance the heat transfer performance in a low power input region. The investigation will provide an insight into the oscillating mechanism of the acetone OHP influenced by ultrasonic sound and provide a new way to enhance the heat transfer performance of the OHP.


2019 ◽  
Vol 140 (6) ◽  
pp. 2605-2614 ◽  
Author(s):  
Hadi Davari ◽  
Hamid Reza Goshayeshi ◽  
Hakan F. Öztop ◽  
Issa Chaer

2008 ◽  
Vol 130 (8) ◽  
Author(s):  
H. B. Ma ◽  
B. Borgmeyer ◽  
P. Cheng ◽  
Y. Zhang

A mathematical model predicting the oscillating motion in an oscillating heat pipe is developed. The model considers the vapor bubble as the gas spring for the oscillating motions including effects of operating temperature, nonlinear vapor bulk modulus, and temperature difference between the evaporator and the condenser. Combining the oscillating motion predicted by the model, a mathematical model predicting the temperature difference between the evaporator and the condenser is developed including the effects of the forced convection heat transfer due to the oscillating motion, the confined evaporating heat transfer in the evaporating section, and the thin film condensation in the condensing section. In order to verify the mathematical model, an experimental investigation was conducted on a copper oscillating heat pipe with eight turns. Experimental results indicate that there exists an onset power input for the excitation of oscillating motions in an oscillating heat pipe, i.e., when the input power or the temperature difference from the evaporating section to the condensing section was higher than this onset value the oscillating motion started, resulting in an enhancement of the heat transfer in the oscillating heat pipe. Results of the combined theoretical and experimental investigation will assist in optimizing the heat transfer performance and provide a better understanding of heat transfer mechanisms occurring in the oscillating heat pipe.


Author(s):  
Yi Li ◽  
Qiuliang Wang ◽  
Shunzhong Chen ◽  
Baozhi Zhao ◽  
Yinming Dai

Sign in / Sign up

Export Citation Format

Share Document