ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
Latest Publications


TOTAL DOCUMENTS

92
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791856154

Author(s):  
Nannan Zhao ◽  
Benwei Fu ◽  
Dianli Zhao ◽  
Hongbin Ma

The ultrasonic effect on the oscillating motion and heat transfer in an oscillating heat pipe (OHP) containing acetone was investigated experimentally. The ultrasonic sound was applied to the evaporating section of the OHP by using electrically-controlled piezoelectric ceramics. The ultrasonic sound is used to generate and maintain the oscillating motion, and, thereby, heat transfer is enhanced. The heat pipe was tested with or without the ultrasonic sound. In addition, the effects of heat load, filling ratio, orientation, operating temperature, and input power from 15 W to 200 W were investigated. The experimental results demonstrate that ultrasonic sound can affect the oscillating motions and enhance the heat transfer performance of the acetone OHP. In particular, the application of the ultrasonic sound on an acetone OHP can significantly reduce the thermal resistance of the acetone OHP and enhance the heat transfer performance in a low power input region. The investigation will provide an insight into the oscillating mechanism of the acetone OHP influenced by ultrasonic sound and provide a new way to enhance the heat transfer performance of the OHP.


Author(s):  
Yueqiong Wu ◽  
Zhongyang Luo ◽  
Hong Yin ◽  
Tao Wang

Since the surfactant can form rod-like micelles or even cross-link structures, viscoelastic surfactant (VES) fluid has unique rheological characteristics. The demerits of VES fluids have been proven after being applied as the fracturing fluid for several years. However, the fluid has high fluid loss and a low viscosity at high temperature, which limits the application to hydraulic fracturing. This paper focuses on the VES fluid mixed with nanoparticles which should be an effective way to maintain the viscosity at high temperature and high shear rate. The experiments were based on preparation of uniform and stable nanocolloids, which utilize Microfluidizer high shear fluid processor. Dynamic light scattering and microscopic methods are employed to investigate the stability and micro-structure of the VES fluid. The effects of temperature, shear rate and volume fraction of the nanoparticles on rheology of VES were studied. The SiO2 nanoparticles could significantly improve the rheological performance of VES fluid, although the rheological performance at the temperature over 90 °C needs to be enhanced. The mechanisms of interactions between nanoparticles and micelles are also discussed later in the paper. At the end, the potential of VES fluid mixed with nanoparticles during application in fracturing process was discussed.


Author(s):  
Pawan K. Singh ◽  
Hua Feng Samuel Tan ◽  
Chiang Juay Teo ◽  
Poh Seng Lee

The Wavy channels are supposed to enhance performance of microchannel heat sink through chaotic advection. The change in boundary layer thickness (thinning) and the macroscopic mixing due to the formation of Dean’s vortices have been found to be main reasons for enhanced heat transfer in wavy microchannel. Present study carries out a detailed numerical investigation for flow and heat transfer in wavy channel. A 3D geometry for a single loop of wavy channel is modeled in GAMBIT and simulated in CFD software FLUENT. The basic dimensions were 0.15 mm width, 0.3 mm height and 1.5 mm length. The formation of Dean vortices are shown. In parametric study, the effect of Re number on the flow and heat transfer performance is shown. Heat transfer was found to be increased with Re. The effect of Aspect ratio is shown. The channel with the aspect ratio of 0.5 is found to be best among the channels studied including wavy and straight microchannels. A novel concept of secondary branches is introduced to wavy microchannel to take advantage of high pressure zone at crust. The branched wavy microchannel encouraged the secondary flow thus enhanced the macroscopic mixing. Due to disrupt of boundary layer development and its re-initialization, an improved thermal performance was achieved.


Author(s):  
David M. Bierman ◽  
Andrej Lenert ◽  
Evelyn N. Wang

Solar thermophotovoltaic (STPV) devices provide conversion of solar energy to electrical energy through the use of an intermediate absorber/emitter module, which converts the broad solar spectrum to a tailored spectrum that is emitted towards a photovoltaic cell [1]. While the use of an absorber/emitter device could potentially overcome the Shockley-Queisser limit of photovoltaic conversion [2], it also increases the number of heat loss mechanisms. One of the most prohibitive aspects of STPV conversion is the thermal transfer efficiency, which is a measure of how well solar energy is delivered to the emitter. Although reported thermophotovoltaic efficiencies (thermal to electric) have exceeded 10% [3], [4], previously measured STPV conversion efficiencies are below 1% [5], [6], [7]. In this work, we present the design and characterization of a nanostructured absorber for use in a planar STPV device with a high emitter-to-absorber area ratio. We used a process for spatially-selective growth of vertically aligned multi-walled carbon nanotube (MWCNT) forests on highly reflective, smooth tungsten (W) surfaces. We implemented these MWCNT/W absorbers in a TPV system with a one-dimensional photonic crystal emitter, which was spectrally paired with a low bandgap PV cell. A high fidelity, system-level model of the radiative transfer in the device was experimentally validated and used to optimize the absorber surface geometry. For an operating temperature of approximately 1200 K, we experimentally demonstrated a 100% increase in overall STPV efficiency using a 4 to 1 emitter-to-absorber area ratio (relative to a 1 to 1 area ratio), due to improved thermal transfer efficiency. By further increasing the solar concentration incident on the absorber surface, increased emitter-to-absorber area ratios will improve both thermal transfer and overall efficiencies for these planar devices.


Author(s):  
Solomon Adera ◽  
Rishi Raj ◽  
Evelyn N. Wang

Thermal management is increasingly becoming a bottleneck for a variety of high power density applications such as integrated circuits, solar cells, microprocessors, and energy conversion devices. The performance and reliability of these devices are usually limited by the rate at which heat can be removed from the device footprint, which averages well above 100 W/cm2 (locally this heat flux can exceed 1000 W/cm2). State-of-the-art air cooling strategies which utilize the sensible heat are insufficient at these large heat fluxes. As a result, novel thermal management solutions such as via thin-film evaporation that utilize the latent heat of vaporization of a fluid are needed. The high latent heat of vaporization associated with typical liquid-vapor phase change phenomena allows significant heat transfer with small temperature rise. In this work, we demonstrate a promising thermal management approach where square arrays of cylindrical micropillar arrays are used for thin-film evaporation. The microstructures control the liquid film thickness and the associated thermal resistance in addition to maintaining a continuous liquid supply via the capillary pumping mechanism. When the capillary-induced liquid supply mechanism cannot deliver sufficient liquid for phase change heat transfer, the critical heat flux is reached and dryout occurs. This capillary limitation on thin-film evaporation was experimentally investigated by fabricating well-defined silicon micropillar arrays using standard contact photolithography and deep reactive ion etching. A thin film resistive heater and thermal sensors were integrated on the back side of the test sample using e-beam evaporation and acetone lift-off. The experiments were carried out in a controlled environmental chamber maintained at the water saturation pressure of ≈3.5 kPa and ≈25 °C. We demonstrated significantly higher heat dissipation capability in excess of 100 W/cm2. These preliminary results suggest the potential of thin-film evaporation from microstructured surfaces for advanced thermal management applications.


Author(s):  
C. J. Ho ◽  
Chi-Ming Lai

Experiments were conducted to investigate the heat transfer characteristics of water-based suspensions of phase change nanocapsules in a natural circulation loop with mini-channel heat sinks and heat sources. A total of 23 and 34 rectangular mini-channels, each with width 0.8 mm, depth 1.2 mm, length 50 mm and hydraulic diameter 0.96 mm, were evenly placed on the copper blocks as the heat source and heat sink, respectively. The adiabatic sections of the circulation loop were constructed using PMMA tubes with an outer diameter of 6 mm and an inner diameter of 4 mm, which were fabricated and assembled to construct a rectangular loop with a height of 630 mm and a width of 220 mm. Using a core material of n-eicosane and a shell of urea-formaldehyde resin, the phase change material nanocapsules of mean particle size 150 nm were fabricated successfully and then dispersed in pure water as the working fluid to form the water-based suspensions with mass fractions of the nanocapsules in the range 0.1–1 wt.%. The results clearly indicate that water-based suspensions of phase change nanocapsules can markedly enhance the heat transfer performance of the natural circulation loop considered.


Author(s):  
Way Lee Cheng ◽  
Reza Sadr

There have been several reports that suspending nano-particles in a fluid, or nanofluids, can enhance heat transfer properties such as conductivity. However, the extend of the reported enhancement is inconsistent in the literature and the exact mechanisms that govern these observations (or phenomena) are not fully understood. Although the interaction between the fluid and suspended particles is suspected to be the main contributor to this phenomenon, literature shows contradicting conclusions in the underlying mechanism responsible for these effects. This highlights the need for development of computational tools in this area. In this study, a computational approach is developed for simulating the induced flow field by randomly moving particles suspended in a quiescent fluid. Brownian displacement is used to describe the random walk of the particles in the fluid. The steady state movement is described with simplified Navier-Stokes equation to solve for the induced fluid flow around the moving particles with constant velocity at small time steps. The unsteady behavior of the induced flow field is approximated using the velocity profiles obtained from FLUENT. Initial results show that random movements of Brownian particles suspended in the fluid induce a random flow disturbance in the flow field. It is observed that the flow statistics converge asymptotically as time-step reduces. Moreover, inclusion of the transitional movement of the particles significantly affects the results.


Author(s):  
Sofen K. Jena ◽  
Swarup K. Mahapatra

The current study is focused on thermal radiation interaction with the natural convection of atmospheric brown cloud (ABC). The current study puts emphasis on ultra fine carbon-black particle suspension of several nano meter range along with some pollutant gas mixture with atmospheric air. The numerical simulation of double diffusive thermo-gravitational convection of ABC is done with Hide and Mason laboratory model for atmosphere. The effect of flow circulation is simulated by setting different value of buoyancy ratios. The effect of participating media radiation has been investigated for various values of optical depth. The governing equations, describing circulation of ABC are solved using modified Marker and Cell method. Gradient dependent consistent hybrid upwind scheme of second order is used for discretization of the convective terms. Discrete ordinate method, with S8 approximation is used to solve radiative transport equation. Comprehensive studies on controlling parameters that affect the flow and heat transfer characteristics have been addressed. The results are provided in graphical and tabular form to delineate the flow behavior and heat transfer characteristics.


Author(s):  
Thomas L. Bougher ◽  
Virendra Singh ◽  
Baratunde A. Cola

A number of studies have reported enhancing the thermal conductivity of semi-crystalline polymers through mechanical stretching, but practical application of this process has proven difficult. Here we demonstrate the application of enhanced thermal conductivity in a purely amorphous polymer for a thermal interface material (TIM) without conductive fillers. Many polymer-based TIMs contain carbon fillers to enhance the thermal conductivity, however the TIMs reported herein are comprised solely of polymer nanotubes. The conjugated polymer polythiophene (Pth) is electropolymerized in nanotemplates to produce arrays of vertically aligned nanotubes, which adhere well to opposing substrates through van der Waals forces. We find that the total thermal resistances of the Pth-TIMs are a strong function of height with some dependence on bonding pressure, yet independent of applied pressure after bonding. Photoacoustic measurements show that the total thermal resistance of the TIMs ranges from 9.8 ± 3.8 to 155 ± 32 mm2-K/W depending on the array height and bonding pressure. Estimates of the component resistances indicate that the majority of the resistance is in the contact between the nanotube free tips and the opposing quartz substrate. These Pth-TIMs demonstrate that enhanced thermal conductivity polymers can be suitable for heat transfer materials without thermally conductive fillers.


Author(s):  
Donguk Suh ◽  
Kenji Yasuoka ◽  
Xiao Cheng Zeng

Vapor condensation on silicon nanotubes has been simulated by classical molecular dynamics to understand how the nucleation and condensation process for pores is affected. Two different nanotube aspect ratios were examined to see if there are growth rate changes. The rate for the two different types of nanotubes did not show significant variation meaning that the aspect ratio is an insignificant factor to enhance condensation. This result is consistent with previous nanorod studies. The supersaturated vapor gathered both inside and outside of the tube. Unlike the growth rate, however, the occurrence of homogeneous nucleation was hindered contrary to other basic geometries in previous studies.


Sign in / Sign up

Export Citation Format

Share Document