EVALUATION OF CONDENSATION HEAT TRANSFER CORRELATIONS FOR THE ANNULAR FLOW REGIME IN MICROFIN TUBES

2018 ◽  
Author(s):  
Zhi-chuan Sun ◽  
Wei Li ◽  
Wei Chen ◽  
Yan He
Author(s):  
Avram Bar-Cohen ◽  
Ilai Sher ◽  
Emil Rahim

The present study is aimed at evaluating the ability of conventional “macro-pipe” correlations and regime transitions to predict the two-phase thermofluid characteristics of mini-channel cold plates. Use is made of the Taitel-Dukler flow regime maps, seven classical heat transfer coefficient correlations and two dryout predictions. The vast majority of the mini-channel two-phase heat-transfer data, taken from the literature, is predicted to fall in the annular regime, in agreement with the reported observations. A characteristic heat transfer coefficient locus has been identified, with a positive slope following the transition from Intermittent to Annular flow and a negative slope following the onset of partial dryout at higher qualities. While the classical two-phase heat transfer correlations are generally capable of providing good agreement with the low-quality annular flow data the quality at which partial dryout occurs and the ensuing heat transfer rates are not predictable by the available macro-pipe correlations.


1999 ◽  
Vol 122 (1) ◽  
pp. 80-91 ◽  
Author(s):  
S. Nozu ◽  
H. Honda

A method is presented for estimating the condensation heat transfer coefficient in a horizontal, spirally grooved microfin tube. Based on the flow observation study performed by the authors, a laminar film condensation model in the annular flow regime is proposed. The model assumes that all the condensate flow occurs through the grooves. The condensate film is segmented into thin and thick film regions. In the thin film region formed on the fin surface, the condensate is assumed to be drained by the combined surface tension and vapor shear forces. In the thick film region formed in the groove, on the other hand, the condensate is assumed to be driven by the vapor shear force. The present and previous local heat transfer data including four fluids (CFC11, HCFC22, HCFC123, and HFC134a) and three microfin tubes are found to agree with the present predictions to a mean absolute deviation of 15.1 percent. [S0022-1481(00)01501-2]


Sign in / Sign up

Export Citation Format

Share Document