EXPERIMENT AND ANALYSIS OF EFFECTIVE THERMAL CONDUCTIVITY OF A COPPER FOAM/PARAFFIN COMPOSITE PHASE CHANGE MATERIAL

2018 ◽  
Author(s):  
Xiao Yang ◽  
Xinghua Zheng ◽  
Shen Li ◽  
Haisheng Chen
Author(s):  
Ayushman Singh ◽  
Srikanth Rangarajan ◽  
Leila Choobineh ◽  
Bahgat Sammakia

Abstract This work presents an approach to optimally designing a composite with thermal conductivity enhancers (TCEs) infiltrated with phase change material (PCM) based on figure of merit (FOM) for thermal management of portable electronic devices. The FOM defines the balance between effective thermal conductivity and energy storage capacity. In present study, TCEs are in the form of a honeycomb structure. TCEs are often used in conjunction with PCM to enhance the conductivity of the composite medium. Under constrained composite volume, the higher volume fraction of TCEs improves the effective thermal conductivity of the composite, while it reduces the amount of latent heat storage simultaneously. The present work arrives at the optimal design of composite for electronic cooling by maximizing the FOM to resolve the stated trade-off. In this study, the total volume of the composite and the interfacial heat transfer area between the PCM and TCE are constrained for all design points. A benchmarked two-dimensional direct CFD model was employed to investigate the thermal performance of the PCM and TCE composite. Furthermore, assuming conduction-dominated heat transfer in the composite, a simplified effective numerical model that solves the single energy equation with the effective properties of the PCM and TCE has been developed. The effective thermal conductivity of the composite is obtained by minimizing the error between the transient temperature gradient of direct and simplified model by iteratively varying the effective thermal conductivity. The FOM is maximized to find the optimal volume fraction for the present design.


2011 ◽  
Vol 399-401 ◽  
pp. 1302-1306 ◽  
Author(s):  
Wei Hua Li ◽  
Jin Feng Mao ◽  
Li Jun Wang ◽  
Lu Yan Sui

The aim of the paper is to analyze the effect of the additives on thermal conductivity of the phase change material. The experiment about heat storage and heat release performance of the composite phase change material which uses sodium acetate trihydrate as host material is studied. The effect of the expanded graphite on the composite phase change material is investigated. The results show that: expanded graphite which can be dispersed evenly in the composite phase change material, the thermal stability is well, significantly improve the thermal conductivity of the composite phase change material.


2018 ◽  
Vol 157 ◽  
pp. 372-381 ◽  
Author(s):  
Huanpei Zheng ◽  
Changhong Wang ◽  
Qingming Liu ◽  
Zhongxuan Tian ◽  
Xianbo Fan

Sign in / Sign up

Export Citation Format

Share Document