Effects of Viscous Dissipation and Joule Heating on Thermal Instability of Natural Convection Flow in a Boundary Layer Flow Subjected to Magnetic Field

2011 ◽  
Vol 38 (3) ◽  
pp. 246-258
Author(s):  
Chin-Tai Chen ◽  
Ming-Han Lin
2017 ◽  
Vol 5 (4RAST) ◽  
pp. 52-58
Author(s):  
Jalaja P ◽  
Venkataramana B.S ◽  
Naveen V ◽  
K.R. Jayakumar

The effect of thermal radiation on steady natural convection boundary layer flow over a plate with variable viscosity and magnetic field has been studied in this paper. The effect of suction and injection is also considered in the investigation. The system of partial differential equations governing the nonsimilar flow has been solved numerically using implicit finite difference scheme along with a quasilinearization technique. The thermal radiation has significant effect on heat transfer coefficient and thermal transport in presence of viscosity variation parameter and magnetic field in case of suction and injection.


2011 ◽  
Vol 66 (6-7) ◽  
pp. 427-440 ◽  
Author(s):  
Nasser S. Elgazery ◽  
Nader Y. Abd Elazem

A mathematical model will be analyzed in order to study the effects of viscous dissipation and Ohmic heating (Joule heating) on magnetohydrodynamic (MHD) natural convection flow of a temperature dependent viscosity from heated vertical wavy surface. The present physical problem is studied numerically by using the appropriate variables, which reduce the complex wavy surface into a flat one. An implicit marching Chebyshev collocation scheme is employed for the analysis. Numerical solutions are obtained for velocity, temperature, local skin friction, and Nusselt number for a selection of parameter sets consisting of Eckert number, Prandtl number, MHD variation, and amplitude-wavelength ratio parameter. Numerical results show that these parameters have significant influences on the velocity and the temperature profiles as well as for the local skin friction and Nusselt number


2018 ◽  
Vol 389 ◽  
pp. 110-127 ◽  
Author(s):  
Kharabela Swain ◽  
Sampada Kumar Parida ◽  
G.C. Dash

The effects of non-uniform heat source/sink and viscous dissipation on MHD boundary layer flow of Williamson nanofluid through porous medium under convective boundary conditions are studied. Surface transport phenomena such as skin friction, heat flux and mass flux are discussed besides the three boundary layers. The striking results reported as: increase in Williamson parameter exhibiting nanofluidity and external magnetic field lead to thinning of boundary layer, besides usual method of suction and shearing action at the plate, a suggestive way of controlling the boundary layer growth. It is easy to implement to augment the strength of magnetic field by regulating the voltage in the circuit. Also, addition of nano particle to the base fluid serves as an alternative device to control the growth of boundary layer and producing low friction at the wall. The present analysis is an outcome of Runge-Kutta fourth order method with a self corrective procedure i.e. shooting method.


2019 ◽  
Vol 16 (1) ◽  
pp. 208-224 ◽  
Author(s):  
Himanshu Upreti ◽  
Manoj Kumar

Purpose The purpose of this paper is to examine the effect of non-linear thermal radiation, Joule heating and viscous dissipation on the mixed convection boundary layer flow of MHD nanofluid flow over a thin moving needle. Design/methodology/approach The equations directing the flow are reduced into ODEs by implementing similarity transformation. The Runge–Kutta–Fehlberg method with a shooting technique was implemented. Findings Numerical outcomes for the coefficient of skin friction and the rate of heat transfer are tabulated and discussed. Also, the boundary layer thicknesses for flow and temperature fields are addressed with the aid of graphs. Originality/value Till now, no numerical study investigated the combined influence of Joule heating, non-linear thermal radiation and viscous dissipation on the mixed convective MHD flow of silver-water nanofluid flow past a thin moving needle. The numerical results for existing work are new and their novelty verified by comparing them with the work published earlier.


Sign in / Sign up

Export Citation Format

Share Document