EFFECT OF ELECTRICAL STIMULI ON COMBUSTION BEHAVIOR OF SOLID OXIDIZERS

Author(s):  
Bradley Gobin ◽  
Sean Whalen ◽  
Emily Plunkett ◽  
Garrett Godshall ◽  
Robert Moore ◽  
...  

Author(s):  
C. Kopicz ◽  
T. J. Watson ◽  
Kenneth K. Kuo ◽  
S. T. Thynell


Author(s):  
B. L. Fetherolf ◽  
D. M. Chen ◽  
T. S. Snyder ◽  
T. A. Litzinger ◽  
Kenneth K. Kuo


2018 ◽  
Author(s):  
Bassem Hallak ◽  
N. Linn ◽  
Eckehard Specht ◽  
Fabian Herz


1998 ◽  
Vol 4 (6) ◽  
pp. 99-102
Author(s):  
Yumiko SAWADA ◽  
Masashi YOSHIDA ◽  
Tsutomu NAGAOKA ◽  
Shintaro MICHIKOSHI ◽  
Nagao HORI


Author(s):  
I. V. Cheretaev ◽  
D. R. Khusainov ◽  
E. N. Chuyan ◽  
M. Yu. Ravaeva ◽  
A. N. Gusev ◽  
...  

The purpose of the review is to summarize current literature data and the results of our own research on the analgesic and anti-inflammatory effects of acetylsalicylic acid, as well as the physiological mechanisms underlying them. This acid is the most studied reference representative of salicylates, which is convenient to consider the physiological effects characteristic in general for this group of chemical and medicinal products. Acetylsalicylic acid has analgesic properties against thermal pain and pain caused by electrical stimuli, as well as a pronounced anti-inflammatory effect. The realization of these properties depends on the peculiarities of aspirin metabolism in the body, ion and synaptic mechanisms for controlling the functional state of the cell, neurotransmitter systems of the сentral nervous system, and mechanisms of peripheral and сentral analgesia. Analgesic properties of acetylsalicylic acid founded not only in normal, but also in ultra-small doses. Various physical and especially chemical factors significantly change their effects. This increases the interest in studying the analgesic activity of salicylates and their physiological mechanisms, since such studies can serve as a basis for creating new non-steroidal anti-inflammatory drugs with low toxicity and high safety for patients, and improve the strategy of their practical use. Currently, the most detailed study of the physiological mechanism of analgesic and anti-inflammatory action of aspirin and its main metabolite – salicylic acid. However, it should be note that despite the abundance of existing data obtained in scientific studies of the effects of aspirin and its practical use, there are a number of unexplained aspects of the action of this drug, the mechanism of which has not yet been deciphered. The continuing interest in the effects and mechanisms of action of this drug and in connection with the expansion of its use evidenced by a consistently high number of scientific publications on aspirin in the most famous foreign and domestic publications. At the same time, the number of publications about aspirin is an order of magnitude higher than about any other drug known to humanity.



Fuel ◽  
2021 ◽  
Vol 294 ◽  
pp. 120511
Author(s):  
Ulrich Doll ◽  
Christophe Barro ◽  
Michele Todino ◽  
Konstantinos Boulouchos


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1217
Author(s):  
Jang Ho Ha ◽  
Jae Hyun Lim ◽  
Ji Woon Kim ◽  
Hyeon-Yeol Cho ◽  
Seok Geun Jo ◽  
...  

Blended hydrogels play an important role in enhancing the properties (e.g., mechanical properties and conductivity) of hydrogels. In this study, we generated a conductive blended hydrogel, which was achieved by mixing gelatin methacrylate (GelMA) with collagen, and silver nanowire (AgNW). The ratio of GelMA, collagen and AgNW was optimized and was subsequently gelated by ultraviolet light (UV) and heat. The scanning electron microscope (SEM) image of the conductive blended hydrogels showed that collagen and AgNW were present in the GelMA hydrogel. Additionally, rheological analysis indicated that the mechanical properties of the conductive GelMA–collagen–AgNW blended hydrogels improved. Biocompatibility analysis confirmed that the human umbilical vein endothelial cells (HUVECs) encapsulated within the three-dimensional (3D), conductive blended hydrogels were highly viable. Furthermore, we confirmed that the molecule in the conductive blended hydrogel was released by electrical stimuli-mediated structural deformation. Therefore, this conductive GelMA–collagen–AgNW blended hydrogel could be potentially used as a smart actuator for drug delivery applications.



Sign in / Sign up

Export Citation Format

Share Document