The Investigation of the Stressed-Deformed State of the Compound Rotation Body with Controlled Pressure in the Contact Part

2001 ◽  
Vol 33 (1) ◽  
pp. 10
Author(s):  
Olga A. Marchenko
2011 ◽  
Vol 0 (4) ◽  
pp. 72
Author(s):  
Grigoriy Golka ◽  
Anton Bilostotskiy ◽  
Igor Subbota ◽  
Valeriy Sukhoveckiy ◽  
Oleg Fadeev

2020 ◽  
Vol 0 (4) ◽  
pp. 43-51
Author(s):  
A. L. Vorontsov ◽  
◽  
I. A. Nikiforov ◽  

Formulae have been obtained that are necessary to calculate cumulative deformation in the process of straitened extrusion in the central area closed to the working end of the counterpunch. The general method of plastic flow proposed by A. L. Vorontsov was used. The obtained formulae allow one to determine the deformed state of a billet in any point of the given area. The formulae should be used to take into account the strengthening of the extruded material.


Author(s):  
Vladimir Gogo ◽  
◽  
Alexander Kipko ◽  
Nikolay Vlasenko ◽  
Yuliia Simonova ◽  
...  

2010 ◽  
Vol 7 ◽  
pp. 129-142
Author(s):  
M.A. Ilgamov ◽  
A.G. Khakimov

The article investigates the reflection of a longitudinal damped travelling wave from the transverse notch and its movement along an infinite rod plunged into viscous liquid. The simplest model for the stress deformed state in the notch zone is applied. The solution is found to depend on the parameters of the liquid and damping characteristics in the material of the rod and the surrounding liquid. The solution to the inverse problem makes it possible to define the coordinate of the notch and the parameter that contains its depth and length using data on both the incident and reflected waves at the observation point.


2006 ◽  
Vol 4 ◽  
pp. 68-72
Author(s):  
A.G. Khakimov ◽  
Z.Z Sharafutdinov

The paper gives a methodology for calculating the drill string performance under off-design conditions, including the passage through the interface separating rocks with very different physico-mechanical characteristics, drilling of boulder rocks, and dynamic modes of operation. One of the mechanisms of the destruction of drill string elements and roller cutters is revealed.


2011 ◽  
Vol 8 (1) ◽  
pp. 275-286
Author(s):  
R.G. Yakupov ◽  
D.M. Zaripov

The stress-deformed state of the underground main pipeline under the action of seismic waves of an earthquake is considered. The generalized functions of seismic impulses are constructed. The pipeline motion equations are solved with used Laplace transformation by the time. Tensions and deformations of the pipeline have been determined. A numerical example is reviewed. Diagrams of change of the tension depending on earthquake force are provided in earthquake-points.


1997 ◽  
Vol 41 (5) ◽  
pp. 822-829
Author(s):  
Makoto Takenaka ◽  
Yutaka Ito ◽  
Shigemitsu Sakuma ◽  
Yoshinori Mukaida ◽  
Kentaro Nakamura ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4910
Author(s):  
Xiaoqiao Yuan ◽  
Jie Li ◽  
Xi Zhang ◽  
Kaiqiang Feng ◽  
Xiaokai Wei ◽  
...  

Rotation modulation (RM) has been widely used in navigation systems to significantly improve the navigation accuracy of inertial navigation systems (INSs). However, the traditional single-axis rotation modulation cannot achieve the modulation of all the constant errors in the three directions; thus, it is not suitable for application in highly dynamic environments due to requirements for high precision in missiles. Aiming at the problems of error accumulation and divergence in the direction of rotation axis existing in the traditional single-axis rotation modulation, a novel rotation scheme is proposed. Firstly, the error propagation principle of the new rotation modulation scheme is analyzed. Secondly, the condition of realizing the error modulation with constant error is discussed. Finally, the original rotation modulation navigation algorithm is optimized for the new rotation modulation scheme. The experiment and simulation results show that the new rotation scheme can effectively modulate the error divergence of roll angle and improve the accuracy of roll angle by two orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document