Convective Heat Transfer and Absolute Vorticity Flux along Main Flow in a Channel Formed by Flat Tube Bank Fins with Vortex Generators Mounted on Both Fin Surfaces

2009 ◽  
Vol 16 (2) ◽  
pp. 123-139 ◽  
Author(s):  
Ke-Wei Song ◽  
Liang-Bi Wang ◽  
Dong-Liang Sun
2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Ke-Wei Song ◽  
Liang-Bi Wang

Secondary flow is the flow in the cross section normal to the main flow. It plays an important role on the enhanced heat transfer and in the applications in other fields. Secondary flow can greatly enhance the convective heat transfer. In order to find the effectiveness of secondary flow for heat transfer enhancement, a nondimensional parameter, Se, based on the absolute vorticity flux is reported to specify the intensity of secondary flow. Its physical meaning is the ratio of inertial force to viscous force induced by secondary flow. As an example, the effectiveness of secondary flow was numerically studied for a flat tube bank fin heat exchanger with vortex generators (VGs) mounted on both surfaces of the fin. The contributions of VGs are investigated for the enhancements of secondary flow intensity, convective heat transfer, and pressure drop. The method is demonstrated using Se to find out the optimum configurations of VGs. The results reveal that close relationships exist not only between the span-average nondimensional intensity of secondary flow and the span-average Nusselt number but also between the volume average nondimensional intensity of secondary flow and the overall average Nusselt number. For the configuration studied, a ratio of Nusselt number enhancement to the friction factor enhancement increases with increasing the enhancement of secondary flow intensity. As a supplement to traditional criteria on a good performance heat transfer surface, the nondimensional intensity of secondary flow can be used clearly for an optimum value of VG parameter.


Author(s):  
Mohd. S. Aris ◽  
Ieuan Owen ◽  
Chris. J. Sutcliffe

This paper is concerned with convective heat transfer enhancement of heated surfaces through the use of vortex generators and flow control devices. A preliminary proof-of-concept investigation has been carried out into the use of active vortex generators and flow control elements, both manufactured from Shape Memory Alloys (SMAs) which are activated at set temperatures. The vortex generators change their shape to intrude further into the flow at high temperature to enhance heat transfer, while they maintain a low profile at low temperatures to minimise flow pressure losses. One set of vortex generators was made from pre-alloyed powders of SMA material in an advanced rapid prototyping process known as Selective Laser Melting (SLM). Another set of devices was also made from commercially available flat annealed thin SMA sheets for comparison purposes. The flow control elements are devices that preferentially guide the flow to heated parts of a surface, again using temperature-activated SMAs. Promising results were obtained for both the vortex generator and flow control device when their temperatures were varied from 20° to 85°C. The vortex generators responded by increasing their angle of attack from 20° to 35° while the wavy flow control elements straightened out at higher temperatures. As the designs were two-way trained, they regain their initial position and shape at a lower temperature. The surface temperature of the heated plate on which the active devices were positioned reduced between 8 to 51%, indicating heat transfer enhancement due to the generated vortices and changes in air flow rates.


1991 ◽  
Vol 113 (3) ◽  
pp. 604-611 ◽  
Author(s):  
C. Y. Soong ◽  
S. T. Lin ◽  
G. J. Hwang

The paper presents an experimental study of convective heat transfer in radially rotating isothermal rectangular ducts with various height and width aspect ratios. The convective heat transfer is affected by secondary flows resulting from Coriolis force and the buoyancy flow, which is in turn due to the centrifugal force in the duct. The growth and strength of the secondary flow depend on the rotational Reynolds number; the effect of the buoyancy flow is characterized by the rotational Rayleigh number. The aspect ratio of the duct may affect the secondary flow and the buoyancy flow, and therefore is also a critical parameter in the heat transfer mechanism. In the present work the effects of the main flow, the rotational speed, and the aspect ratio γ on heat transfer are subjects of major interest. Ducts of aspect ratios γ=5, 2, 1, 0.5, and 0.2 at rotational speed up to 3000 rpm are studied. The main flow Reynolds number ranges from 700 to 20,000 to cover the laminar, transitional, and turbulent flow regimes in the duct flow. Test data and discussion are presented.


Sign in / Sign up

Export Citation Format

Share Document