FLOW VISUALIZATION AT THE LIQUID FREE SURFACE

1993 ◽  
Vol 1 (3) ◽  
pp. 181-188
Author(s):  
M. D. Cazacu
1997 ◽  
Vol 36 (13) ◽  
pp. 2905
Author(s):  
Luis P. Thomas ◽  
Roberto Gratton ◽  
Beatriz M. Marino

2018 ◽  
Vol 844 ◽  
pp. 61-91 ◽  
Author(s):  
Weihua Li ◽  
Satish Kumar

The coating of discrete objects is an important but poorly understood step in the manufacturing of a broad variety of products. An important model problem is the flow of a thin liquid film on a rotating cylinder, where instabilities can arise and compromise coating uniformity. In this work, we use lubrication theory and flow visualization experiments to study the influence of surfactant on these flows. Two coupled evolution equations describing the variation of film thickness and concentration of insoluble surfactant as a function of time, the angular coordinate and the axial coordinate are solved numerically. The results show that surface-tension forces arising from both axial and angular variations in the angular curvature drive flows in the axial direction that tend to smooth out free-surface perturbations and lead to a stable speed window in which axial perturbations do not grow. The presence of surfactant leads to Marangoni stresses that can cause the stable speed window to disappear by driving flow that opposes the stabilizing flow. In addition, Marangoni stresses tend to reduce the spacing between droplets that form at low rotation rates, and reduce the growth rate of rings that form at high rotation rates. Flow visualization experiments yield observations that are qualitatively consistent with predictions from linear stability analysis and the simulation results. The visualizations also indicate that surfactants tend to suppress dripping, slow the development of free-surface perturbations, and reduce the shifting and merging of rings and droplets, allowing more time for solidifying coatings in practical applications.


2016 ◽  
Vol 51 (2) ◽  
pp. 127-135 ◽  
Author(s):  
A. Yu. Il’inykh ◽  
Yu. D. Chashechkin

AIChE Journal ◽  
2017 ◽  
Vol 63 (6) ◽  
pp. 2483-2495 ◽  
Author(s):  
Maya Mounir Daou ◽  
Elena Igualada ◽  
Hugo Dutilleul ◽  
Jean‐Marie Citerne ◽  
Javier Rodríguez‐Rodríguez ◽  
...  

2009 ◽  
Vol 1243 ◽  
Author(s):  
J. Solórzano-López ◽  
R. Zenit ◽  
C. González-Rivera ◽  
M. A. Ramírez-Argáez

ABSTRACTGas jets play a key role in several steelmaking processes as in the Basic Oxygen Furnace (BOF) or in the Electric Arc Furnace (EAF). They improve heat, mass and momentum transfer in the liquid bath, improve mixing of chemical species and govern the formation of foaming slag in EAF. In this work experimental measurements are performed to determine the dimensions of the cavity formed at the liquid free surface when a gas jet impinges on it as well as liquid velocity vector maps measured in the zone affected by the gas jet. Cavities are measured using a high speed camera while the vector maps are determined using a Particle Image Velocimetry (PIV) technique. Both velocities and cavities are determined as a function of the main process variables: gas flow rate, distance from the nozzle to the free surface and lance angle. Cavity dimensions (depth and diameter) are statistically treated as a function of the process variables and also as a function of the adequate dimensionless numbers that govern these phenomena. It is found that Froude number and Weber number control the depression geometry.


Sign in / Sign up

Export Citation Format

Share Document