scholarly journals Studies on the Physiological Nature of Sweet Potato Plants : (1)ON the Variations of Reserve Carbohydrates in the newly Developing Root Tubers during the Growing Period

1952 ◽  
Vol 21 (1-2) ◽  
pp. 145-146
Author(s):  
Junzaburo NAKA ◽  
Hiroshi OMORI ◽  
Masaru KURETANI
1995 ◽  
Vol 41 (3) ◽  
pp. 557-566 ◽  
Author(s):  
Mitsuru Osaki ◽  
Hiroyuki Ueda ◽  
Takuro Shinano ◽  
Hirokazu Matsui ◽  
Toshiaki Tadano

2014 ◽  
Vol 88 (2) ◽  
pp. 424-435 ◽  
Author(s):  
Joana M. Marques ◽  
Thais F. da Silva ◽  
Renata E. Vollu ◽  
Arie F. Blank ◽  
Guo-Chun Ding ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3064
Author(s):  
Qi Gao ◽  
Jia-Le Wu ◽  
Lan-Ping Jiang ◽  
Su-Qi Sun ◽  
Xue-Jun Gu ◽  
...  

Sweet potato plants were treated with selenium (Se). Spraying Se on the sweet potato leaves was an effective Se enrichment method and proteins were extracted from the sweet potato stem. The structural characteristics of the protein were investigated. Fourier transform infrared spectroscopy (FT-IR) detected more signals from the Se-enriched sweet potato stem protein (SSP), and the number of forms of Se chemical bonds gradually increased with increasing Se content, such as the Se-O bond in high Se-enriched SSP, indicating altered secondary structures.Scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) indicated more Se atoms in the Se-enriched SSPs (SSSPs). The DSC results revealed that Se enrichment enhanced the thermal stability of the samples. Moreover, selenomethionine (SeMet), selenocystine (SeCys2), and methylselenocysteine (MeSeCys) were determined to be the main Se forms in the SSSPs. Furthermore, the SSSPs showed relatively higher superoxide anion radical and DPPH radical scavenging activities than the blank, which indicates that SSSPs can be used as antioxidants. By recovering the proteins, the agricultural by-product—sweet potato stem can be further utilized, and the obtained Se-enriched proteins may contribute to human health.


1969 ◽  
Vol 66 (4) ◽  
pp. 254-260 ◽  
Author(s):  
Lii-Chyuan Liu ◽  
Edwin Acevedo-Borrero ◽  
F. H. Ortiz

Two herbicide experiments were carried out in 1980 to evaluate Alachor and Metribuzin alone or combined for weed control in sweet potato cultivar Miguela at the Isabela and Fortuna Substations, Metribuzin at 1.12 kg ai/ha rate controlled effectively both broadleaf weeds and grasses. A minimum rate of 6.73 kg ai/ha of Alachor was needed for acceptable weed control. Metribuzin at the 1.12 kg al/ha rate in combination with Alachor at the 3.36 kg ai/ha rate provided the best weed control. There was no visible herbicide injury to sweet potato plants at the Isabela Substation. Moderate crop injury as a consequence of Metribuzin application at 2.24 kg ai/ha was apparent at the Fortuna Substation. The highest tuber yield was obtained with Metribuzin at 1.12 kg ai/ha in combination with Alachor at 3.36 kg ai/ha at both Substations. Metribuzin at 1.12 kg ai/ha rate alone or in combination with any other herbicide also produced good tuber yield. Sweet potatoes with standard herbicide treatments, Diphenamid and Chloramben, yielded poorly because of weed competition.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lingmin Jiang ◽  
Jae Chul Jeong ◽  
Jung-Sook Lee ◽  
Jeong Mee Park ◽  
Jung-Wook Yang ◽  
...  

Abstract Biocontrol offers a promising alternative to synthetic fungicides for the control of a variety of pre- and post-harvest diseases of crops. Black rot, which is caused by the pathogenic fungus Ceratocytis fimbriata, is the most destructive post-harvest disease of sweet potato, but little is currently known about potential biocontrol agents for this fungus. Here, we isolated several microorganisms from the tuberous roots and shoots of field-grown sweet potato plants, and analyzed their ribosomal RNA gene sequences. The microorganisms belonging to the genus Pantoea made up a major portion of the microbes residing within the sweet potato plants, and fluorescence microscopy showed these microbes colonized the intercellular spaces of the vascular tissue in the sweet potato stems. Four P. dispersa strains strongly inhibited C. fimbriata mycelium growth and spore germination, and altered the morphology of the fungal hyphae. The detection of dead C. fimbriata cells using Evans blue staining suggested that these P. dispersa strains have fungicidal rather than fungistatic activity. Furthermore, P. dispersa strains significantly inhibited C. fimbriata growth on the leaves and tuberous roots of a susceptible sweet potato cultivar (“Yulmi”). These findings suggest that P. dispersa strains could inhibit black rot in sweet potato plants, highlighting their potential as biocontrol agents.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anja K. Meents ◽  
Shi-Peng Chen ◽  
Michael Reichelt ◽  
Hsueh-Han Lu ◽  
Stefan Bartram ◽  
...  

AbstractPlants perceive and respond to volatile signals in their environment. Herbivore-infested plants release volatile organic compounds (VOCs) which can initiate systemic defense reactions within the plant and contribute to plant-plant communication. Here, for Ipomoea batatas (sweet potato) leaves we show that among various herbivory-induced plant volatiles, (E)-4,8–dimethyl–1,3,7-nonatriene (DMNT) had the highest abundance of all emitted compounds. This homoterpene was found being sufficient for a volatile-mediated systemic induction of defensive Sporamin protease inhibitor activity in neighboring sweet potato plants. The systemic induction is jasmonate independent and does not need any priming-related challenge. Induced emission and responsiveness to DMNT is restricted to a herbivory-resistant cultivar (Tainong 57), while a susceptible cultivar, Tainong 66, neither emitted amounts comparable to Tainong 57, nor showed reaction to DMNT. This is consistent with the finding that Spodoptera larvae feeding on DMNT-exposed cultivars gain significantly less weight on Tainong 57 compared to Tainong 66. Our results indicate a highly specific, single volatile-mediated plant-plant communication in sweet potato.


Sign in / Sign up

Export Citation Format

Share Document