scholarly journals Cell-Physiological Studies on the Mechanism of Ripening in Crop Plants : (1) Histochemical Demonstration and Localization of Phosphorylase in Crop Plants

1955 ◽  
Vol 23 (4) ◽  
pp. 277-282
Author(s):  
Reizo AIMI ◽  
Taka MURAKAMI
1999 ◽  
Vol 133 (3) ◽  
pp. 243-249 ◽  
Author(s):  
NIGEL G. HALFORD

The most important harvested organs of crop plants, such as seeds, tubers and fruits, are often described as assimilate sinks. They play little or no part in the fixation of carbon through the production of sugars through photosynthesis, or in the uptake of nitrogen and sulphur, but import these assimilated resources to support metabolism and to store them in the form of starch, oils and proteins. Wild plants store resources in seeds and tubers to later support an emergent young plant. Cultivated crops are effectively storing resources to provide us with food and many have been bred to accumulate much more than would be required otherwise. For example, approximately 80% of a cultivated potato plant's dry weight is contained in its tubers, ten times the proportion in the tubers of its wild relatives (Inoue & Tanaka 1978). Cultivation and breeding has brought about a shift in the partitioning of carbon and nitrogen assimilate between the organs of the plant.


Author(s):  
W. Jurecka ◽  
W. Gebhart ◽  
H. Lassmann

Diagnosis of metabolic storage disease can be established by the determination of enzymes or storage material in blood, urine, or several tissues or by clinical parameters. Identification of the accumulated storage products is possible by biochemical analysis of isolated material, by histochemical demonstration in sections, or by ultrastructural demonstration of typical inclusion bodies. In order to determine the significance of such inclusions in human skin biopsies several types of metabolic storage disease were investigated. The following results were obtained.In MPS type I (Pfaundler-Hurler-Syndrome), type II (Hunter-Syndrome), and type V (Ullrich-Scheie-Syndrome) mainly “empty” vacuoles were found in skin fibroblasts, in Schwann cells, keratinocytes and macrophages (Dorfmann and Matalon 1972). In addition, prominent vacuolisation was found in eccrine sweat glands. The storage material could be preserved in part by fixation with cetylpyridiniumchloride and was also present within fibroblasts grown in tissue culture.


Author(s):  
W. Allen Shannon ◽  
Hannah L. Wasserkrug ◽  
andArnold M. Seligman

The synthesis of a new substrate, p-N,N-dimethylamino-β-phenethylamine (DAPA)3 (Fig. 1) (1,2), and the testing of it as a possible substrate for tissue amine oxidase activity have resulted in the ultracytochemical localization of enzyme oxidase activity referred to as DAPA oxidase (DAPAO). DAPA was designed with the goal of providing an amine that would yield on oxidation a stronger reducing aldehyde than does tryptamine in the histochemical demonstration of monoamine oxidase (MAO) with tetrazolium salts.Ultracytochemical preparations of guinea pig heart, liver and kidney and rat heart and liver were studied. Guinea pig kidney, known to exhibit high levels of MAO, appeared the most reactive of the tissues studied. DAPAO reaction product appears primarily in mitochondrial outer compartments and cristae (Figs. 2-4). Reaction product is also localized in endoplasmic reticulum, cytoplasmic vacuoles and nuclear envelopes (Figs. 2 and 3) and in the sarcoplasmic reticulum of heart.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
J Van Staden ◽  
MG Kulkarni ◽  
GD Ascough ◽  
ME Light
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document