A composite optimization method for separation parameters of large-eccentricity pico-satellites

2018 ◽  
Vol 19 (5) ◽  
pp. 685-698
Author(s):  
Lai Teng ◽  
Zhong-he Jin
2020 ◽  
Author(s):  
Chen Li ◽  
Ying Ma ◽  
Yu Zhang ◽  
Jinguo Liu

Abstract A super redundant serpentine manipulator has slender structure and multiple degrees of freedom and can travel through narrow space and move in complex space. This manipulator is composed of many modules that can form different lengths of robot arms for different application sites. The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space. This paper presents a composite optimization method of path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator. In this composite optimization, path planning is established on a Bezier curve, particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator, and a feasible obstacle avoidance path is obtained along with a discrete trajectory tracking using a follow-the-leader strategy. The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve. Simulation results show that this composite optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints. The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.


CICTP 2019 ◽  
2019 ◽  
Author(s):  
Yuchen Wang ◽  
Tao Lu ◽  
Hongxing Zhao ◽  
Zhiying Bao
Keyword(s):  

Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


TAPPI Journal ◽  
2015 ◽  
Vol 14 (2) ◽  
pp. 119-129 ◽  
Author(s):  
VILJAMI MAAKALA ◽  
PASI MIIKKULAINEN

Capacities of the largest new recovery boilers are steadily rising, and there is every reason to expect this trend to continue. However, the furnace designs for these large boilers have not been optimized and, in general, are based on semiheuristic rules and experience with smaller boilers. We present a multiobjective optimization code suitable for diverse optimization tasks and use it to dimension a high-capacity recovery boiler furnace. The objective was to find the furnace dimensions (width, depth, and height) that optimize eight performance criteria while satisfying additional inequality constraints. The optimization procedure was carried out in a fully automatic manner by means of the code, which is based on a genetic algorithm optimization method and a radial basis function network surrogate model. The code was coupled with a recovery boiler furnace computational fluid dynamics model that was used to obtain performance information on the individual furnace designs considered. The optimization code found numerous furnace geometries that deliver better performance than the base design, which was taken as a starting point. We propose one of these as a better design for the high-capacity recovery boiler. In particular, the proposed design reduces the number of liquor particles landing on the walls by 37%, the average carbon monoxide (CO) content at nose level by 81%, and the regions of high CO content at nose level by 78% from the values obtained with the base design. We show that optimizing the furnace design can significantly improve recovery boiler performance.


Sign in / Sign up

Export Citation Format

Share Document