Dimensioning a recovery boiler furnace using mathematical optimization

TAPPI Journal ◽  
2015 ◽  
Vol 14 (2) ◽  
pp. 119-129 ◽  
Author(s):  
VILJAMI MAAKALA ◽  
PASI MIIKKULAINEN

Capacities of the largest new recovery boilers are steadily rising, and there is every reason to expect this trend to continue. However, the furnace designs for these large boilers have not been optimized and, in general, are based on semiheuristic rules and experience with smaller boilers. We present a multiobjective optimization code suitable for diverse optimization tasks and use it to dimension a high-capacity recovery boiler furnace. The objective was to find the furnace dimensions (width, depth, and height) that optimize eight performance criteria while satisfying additional inequality constraints. The optimization procedure was carried out in a fully automatic manner by means of the code, which is based on a genetic algorithm optimization method and a radial basis function network surrogate model. The code was coupled with a recovery boiler furnace computational fluid dynamics model that was used to obtain performance information on the individual furnace designs considered. The optimization code found numerous furnace geometries that deliver better performance than the base design, which was taken as a starting point. We propose one of these as a better design for the high-capacity recovery boiler. In particular, the proposed design reduces the number of liquor particles landing on the walls by 37%, the average carbon monoxide (CO) content at nose level by 81%, and the regions of high CO content at nose level by 78% from the values obtained with the base design. We show that optimizing the furnace design can significantly improve recovery boiler performance.

TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 9-14 ◽  
Author(s):  
AINO LEPPÄNEN ◽  
ERKKI VÄLIMÄKI ◽  
ANTTI OKSANEN

Under certain conditions, ash in black liquor forms a locally corrosive environment in a kraft recovery boiler. The ash also might cause efficiency losses and even boiler shutdown because of plugging of the flue gas passages. The most troublesome compounds in a fuel such as black liquor are potassium and chlorine because they change the melting behavior of the ash. Fouling and corrosion of the kraft recovery boiler have been researched extensively, but few computational models have been developed to deal with the subject. This report describes a computational fluid dynamics-based method for modeling the reactions between alkali metal compounds and for the formation of fine fume particles in a kraft recovery boiler furnace. The modeling method is developed from ANSYS/FLUENT software and its Fine Particle Model extension. We used the method to examine gaseous alkali metal compound and fine fume particle distributions in a kraft recovery boiler furnace. The effect of temperature and the boiler design on these variables, for example, can be predicted with the model. We also present some preliminary results obtained with the model. When the model is developed further, it can be extended to the superheater area of the kraft recovery boiler. This will give new insight into the variables that increase or decrease fouling and corrosion


Author(s):  
Marlon Hahn ◽  
A. Erman Tekkaya

AbstractElectrically vaporizing foil actuators are employed as an innovative high speed sheet metal forming technology, which has the potential to lower tool costs. To reduce experimental try-outs, a predictive physics-based process design procedure is developed for the first time. It consists of a mathematical optimization utilizing numerical forming simulations followed by analytical computations for the forming-impulse generation through the rapid Joule heating of the foils. The proposed method is demonstrated for an exemplary steel sheet part. The resulting process design provides a part-specific impulse distribution, corresponding parallel actuator geometries, and the pulse generator’s charging energy, so that all process parameters are available before the first experiment. The experimental validation is then performed for the example part. Formed parts indicate that the introduced method yields a good starting point for actual testing, as it only requires adjustments in the form of a minor charging energy augmentation. This was expectable due to the conservative nature of the underlying modeling. The part geometry obtained with the most suitable charging energy is finally compared to the target geometry.


Author(s):  
Akihiro Takezawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

This paper discuses a new topology optimization method using frame elements for the design of mechanical structures at the conceptual design phase. The optimal configurations are determined by maximizing multiple eigen-frequencies in order to obtain the most stable structures for dynamic problems. The optimization problem is formulated using frame elements having ellipsoidal cross-sections, as the simplest case. Construction of the optimization procedure is based on CONLIN and the complementary strain energy concept. Finally, several examples are presented to confirm that the proposed method is useful for the topology optimization method discussed here.


2014 ◽  
Vol 496-500 ◽  
pp. 429-435
Author(s):  
Xiao Ping Zhong ◽  
Peng Jin

Firstly, a two-level optimization procedure for composite structure is investigated with lamination parameters as design variables and MSC.Nastran as analysis tool. The details using lamination parameters as MSC.Nastran input parameters are presented. Secondly, with a proper equivalent stiffness laminate built to substitute for the lamination parameters, a two-level optimization method based on the equivalent stiffness laminate is proposed. Compared with the lamination parameters-based method, the layer thicknesses of the equivalent stiffness laminate are adopted as continuous design variables at the first level. The corresponding lamination parameters are calculated from the optimal layer thicknesses. At the second level, genetic algorithm (GA) is applied to identify an optimal laminate configuration to target the lamination parameters obtained. The numerical example shows that the proposed method without considering constraints of lamination parameters can obtain better optimal results.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Hong Zhou

The hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells whether they are in the horizontal, vertical, or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains, and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary, and every analysis cell is either solid or void to prevent the gray cell problem that is usually caused by intermediate material states. Stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and to avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions have no point connection, unsmooth boundary, and zigzag member. No post-processing is needed for topology uncertainty caused by point connection or a gray cell. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples of compliant mechanisms.


2019 ◽  
Vol 28 ◽  
pp. 01020
Author(s):  
Łukasz Knypiński

The paper presents an algorithm and computer software for the optimization of electromagnetic devices. The mathematical model of the optimization method was presented. The modification of the classical grey wolf algorithm was developed. The modification consists in decreasing the coefficient responsible for the possibility of migration individuals in the permissible area of solved task. The optimization procedure was elaborated in the Borland Delphi environment. The optimization of the rotor of the line-start permanent magnet synchronous motor has been carried out. It has been pointed out that the grey wolf algorithm is effective method for optimization of electromagnetic devices.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhidan Liu ◽  
Jingwu Zhang ◽  
Weiping Chen ◽  
Di Wu

Based on the upper bound theorem of limit analysis, this paper presents a procedure for assessment of the influence of the soil anisotropy and nonhomogeneity on the stability of fissured slopes subjected to seismic action. By means of a mathematical optimization procedure written in Matlab software codes, the stability factors NS and λcφ are derived with respect to the best upper bound solutions. A series of stability charts are obtained in this paper, and then the critical locations of cracks are determined for cracks of known depth. The results demonstrate a significant influence of the soil anisotropy and nonhomogeneity on the stability of the fissured slopes and the location distribution of the cracks. In addition, the procedures for getting the factor of safety are put forward. It is shown that a decrease in the nonhomogeneity coefficient n0 and an increase in the anisotropy coefficient k could lead to the fissured slopes becoming unsafe. Finally, this article also illustrates the variation in the safety factor of fissured slopes under the impact of three factors (Kh, H1/H, and λ).


2005 ◽  
Vol 128 (2) ◽  
pp. 196-200 ◽  
Author(s):  
Hamid Jahed ◽  
Behrooz Farshi ◽  
Morvarid Karimi

The interest in the use of layered cylinders that combine autofrettage and shrink fit in order to extend fatigue lifetimes is increasing. As the number of layers increases, the sequential order of assembly and the size of each layer become more important. To achieve the most benefical result, a design optimization method is required. In this investigation, the optimum design of a three-layered vessel for maximum fatigue life expectancy under the combined effects of autofrettage and shrink fit has been considered. To obtain optimum size of each layer and to optimize the initial stress distribution, the numerical optimization procedure known as the Simplex search method is employed here. The thickness of each layer, shrink-fit pressures, and autofrettage percentages are treated as design variables. Under stress constraints, the operational sequences for assembly of a layered vessel have been formulated in order to lead to optimum results, defined as maximum life expectancy. The fatigue life consideration is based on ASME code provisions and standards for high pressure vessel technology, which define the allowable final crack depth for multilayer vessels. The proposed procedure has been carried out on a number of examples. The results show that, with proper combination of operations significant life enhancement can be achieved using the optimization procedure.


2018 ◽  
Vol 29 (18) ◽  
pp. 3648-3655 ◽  
Author(s):  
Mohammad Mehdi Naserimojarad ◽  
Mehrdad Moallem ◽  
Siamak Arzanpour

Magnetorheological dampers have been used in automotive industry and civil engineering applications for shock and vibration control for some time. While such devices are known to provide reliable shock and vibration suppression, there exist emerging applications in which the magnetorheological dampers have to be optimized in terms of power consumption and overall weight (e.g. energy-efficient electric vehicles). Utilizing traditional optimal design approaches to tackle those issues can sometimes lead to convergence problems such as getting trapped in a local extremum and failing to converge to the global optimum. Furthermore, manufacturing limitations are usually not taken into account in the optimization process which may hamper achieving an optimal design. In this article, we present a method for optimal design of magnetorheological dampers by utilizing mathematical optimization and finite element analysis. The proposed method avoids infeasible solutions by considering physical constraints such as fabrication limitations and tolerances. This approach takes every single feasible solution into account so that the final solution would be the global extremum of the optimization cost function. The proposed approach is applied to optimize a complex magnetorheological damper structure with different types of materials such as steel and AlNiCo. In particular, we present the design of a valve-mode magnetorheological damper with AlNiCo integrated as its core. A magnetorheological damper prototype is manufactured based on the proposed optimization method and tested experimentally.


Sign in / Sign up

Export Citation Format

Share Document