Solving composite scheduling problems using the hybrid genetic algorithm

2010 ◽  
Vol 11 (12) ◽  
pp. 953-958
Author(s):  
Azuma Okamoto ◽  
Mitsumasa Sugawara
2009 ◽  
Vol 419-420 ◽  
pp. 633-636 ◽  
Author(s):  
James C. Chen ◽  
Wun Hao Jaong ◽  
Cheng Ju Sun ◽  
Hung Yu Lee ◽  
Jenn Sheng Wu ◽  
...  

Resource-constrained multi-project scheduling problems (RCMPSP) consider precedence relationship among activities and the capacity constraints of multiple resources for multiple projects. RCMPSP are NP-hard due to these practical constraints indicating an exponential calculation time to reach optimal solution. In order to improve the speed and the performance of problem solving, heuristic approaches are widely applied to solve RCMPSP. This research proposes Hybrid Genetic Algorithm (HGA) and heuristic approach to solve RCMPSP with an objective to minimize the total tardiness. HGA is compared with three typical heuristics for RCMPSP: Maximum Total Work Content, Earliest Due Date, and Minimum Slack. Two typical RCMPSP from literature are used as a test bed for performance evaluation. The results demonstrate that HGA outperforms the three heuristic methods in term of the total tardiness.


2013 ◽  
Vol 52 (4) ◽  
pp. 1074-1089 ◽  
Author(s):  
Anh-Dung Do Ngoc ◽  
Soo-Heon Lee ◽  
Ilkyeong Moon

2020 ◽  
Vol 9 (3) ◽  
pp. 201-212
Author(s):  
Fani Puspitasari ◽  
Parwadi Moengin

The problem of university course scheduling is a complicated job to do because of the many constraints that must be considered, such as the number of courses, the number of rooms available, the number of students, lecturer preferences, and time slots. The more courses that will be scheduled, the scheduling problem becomes more complex to solve. Therefore, it is necessary to set an automatic course schedule based on optimization method. The aim of this research is to gain an optimal solution in the form of schedule in order to decrease the number of clashed courses, optimize room utilization and consider the preferences of lecturer-course. In this research, a hybridization method of Genetic Algorithm (GA) and Pattern Search (PS) is investigated for solving university course scheduling problems. The main algorithm is GA to find the global optimum solution, while the PS algorithm is used to find the local optimum solution that is difficult to obtain by the GA method. The simulation results with 93 courses show that the Hybrid GA-PS method works better than does the GA method without hybrid, as evidenced by the better fitness value of the hybrid GA-PS method which is -3528.62 and 99.24% of the solutions achieved. While the GA method without hybrid is only able to reach a solution of around 65% and has an average fitness value of -3100.76.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Hamed Piroozfard ◽  
Kuan Yew Wong ◽  
Adnan Hassan

Scheduling is considered as an important topic in production management and combinatorial optimization in which it ubiquitously exists in most of the real-world applications. The attempts of finding optimal or near optimal solutions for the job shop scheduling problems are deemed important, because they are characterized as highly complex andNP-hard problems. This paper describes the development of a hybrid genetic algorithm for solving the nonpreemptive job shop scheduling problems with the objective of minimizing makespan. In order to solve the presented problem more effectively, an operation-based representation was used to enable the construction of feasible schedules. In addition, a new knowledge-based operator was designed based on the problem’s characteristics in order to use machines’ idle times to improve the solution quality, and it was developed in the context of function evaluation. A machine based precedence preserving order-based crossover was proposed to generate the offspring. Furthermore, a simulated annealing based neighborhood search technique was used to improve the local exploitation ability of the algorithm and to increase its population diversity. In order to prove the efficiency and effectiveness of the proposed algorithm, numerous benchmarked instances were collected from the Operations Research Library. Computational results of the proposed hybrid genetic algorithm demonstrate its effectiveness.


2013 ◽  
Vol 845 ◽  
pp. 559-563
Author(s):  
Hamed Piroozfard ◽  
Adnan Hassan ◽  
Ali Mokhtari Moghadam ◽  
Ali Derakhshan Asl

Job shop scheduling problems are immensely complicated problems in machine scheduling area, and they are classified as NP-hard problems. Finding optimal solutions for job shop scheduling problems with exact methods incur high cost, therefore, looking for approximate solutions with meta-heuristics are favored instead. In this paper, a hybrid framework which is based on a combination of genetic algorithm and simulated annealing is proposed in order to minimize maximum completion time i.e. makespan. In the proposed algorithm, precedence preserving order-based crossover is applied which is able to generate feasible offspring. Two types of mutation operators namely swapping and insertion mutation are used in order to maintain diversity of population and to perform intensive search. Furthermore, a new approach is applied for arranging operations on machines, which improved solution quality and decreased computational time. The proposed hybrid genetic algorithm is tested with a set of benchmarking problems, and simulation results revealed efficiency of the proposed hybrid genetic algorithm compared to conventional genetic based algorithm.


2012 ◽  
Vol 590 ◽  
pp. 557-562 ◽  
Author(s):  
Ying Jie Huang ◽  
Xi Fan Yao ◽  
Dong Yuan Ge ◽  
Yong Xiang Li

By combining Genetic algorithm with Tabu search algorithm and adjusting crossover rate and mutation rate based on information entropy, a hybrid genetic algorithm was proposed for larger-scale job shop scheduling problems, and the benchmark instances were used to verify the algorithm with simulation. Simulation results show that the proposed algorithm can solve larger-scale job shop scheduling problems, and it has obvious advantages over traditional scheduling algorithms.


Sign in / Sign up

Export Citation Format

Share Document