scholarly journals Leaf Gas Exchange and Damage of Mahogany and Pond Apple Trees from AdultDiaprepes abbreviatus(Coleoptera: Curculionidae) Feeding and Soil Flooding

2011 ◽  
Vol 94 (3) ◽  
pp. 655-668
Author(s):  
Cliff G. Martin ◽  
Catharine Mannion ◽  
Bruce Schaffer
HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1097C-1097
Author(s):  
Todd C. Einhorn ◽  
Horst W. Caspari ◽  
Steve Green

Approach-grafted 1-year-old `Gala'/M7 apple trees were grown with both tops for the remainder of the 2003 season in a greenhouse. Trees were supplied with >100% (control, PRD100) or 50% (PRD50, DI50) of daily ETc either applied to one root compartment only (PRD100, PRD50) or divided evenly across both root compartments (control and DI50). ETc was estimated from gravimetric measurements, and irrigation was switched between wet and dry root compartments several times throughout the experiment. Soil moisture was measured both gravimetrically (tripod) and volumetrically (time-domain reflectometry). Predawn leaf water potential (υpd) and single leaf gas exchange (photosynthesis, stomatal conductance, and transpiration) were recorded daily, and sap flow in stems and roots was monitored continuously using the heat-pulse technique. Leaves were collected for abscisic acid (ABA) determination following gas exchange measurements. Regardless of irrigation placement (i.e., PRD or DI), both 50% ETc treatments experienced similar declines in υpd and single leaf gas exchange relative to control levels. In addition, ABA concentrations were similar for PRD50 and DI50, and were significantly higher than the control and PRD100 treatments. PRD100 trees had similar υpd as control trees; however, gas exchange was reduced >25% compared to the control. Bulk leaf ABA concentration did not differ significantly from control levels and does not by itself explain the down regulation of stomata with PRD100.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 127
Author(s):  
Richard M. Bastías ◽  
Pasquale Losciale ◽  
Camilla Chieco ◽  
Luca Corelli-Grappadelli

There is little information about the role of red and blue light on leaf morphology and physiology in fruit trees, and more studies have been developed in herbaceous plants grown under controlled light conditions. The objective of this research was to evaluate the effect of red and blue screens on morpho-anatomy and gas exchange in apple leaves grown under ambient sunlight conditions. Apple trees cv. Fuji were covered by 40% red and blue nets, leaving trees with 20% white net as control. Light relations (photosynthetic photon flux density, PPFD; red to far-red light ratio, R/FR and blue to red light ratio, B/R), morpho-anatomical features of the leaf (palisade to spongy mesophyll ratio, P/S, and stomata density, SD) and leaf gas exchange (net photosynthesis rate, An; stomatal conductance, gs; transpiration rate, E; and intrinsic water use efficiency, IWUE) were evaluated. Red and blue nets reduced 27% PPFD, reducing by 20% SD and 25% P/S compared to control, but without negative effects on An and gs. Blue net increased gs 21%, leading to the highest E and lowest IWUE by increment of B/R light proportion. These findings demonstrate the potential use of red and blue nets for differential modulation of apple leaf gas exchange through sunlight management under field conditions.


2005 ◽  
Vol 49 (2) ◽  
pp. 317-319 ◽  
Author(s):  
R. Y. Yordanova ◽  
A. N. Uzunova ◽  
L. P. Popova

HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 601b-601
Author(s):  
Krista L. Kugler-Quinn ◽  
Curt R. Rom ◽  
Donn T. Johnson

Single leaf gas exchange measurements were taken at a range of light intensities from 20 to 1500 μmol·m-2·s-1 PAR under greenhouse conditions on `Washington Spur'/EMLA seven potted apple trees subjected to either 1500 cumulative mite days (CMD) European Red mite (ERM) damage or no mite damage. 1500 CMD ERM damage significantly reduced assimilation (A) over all light intensities for leaves present during mite damage at 6 days after the mite population had reached the 1500 CMD level and the mites were killed. Mite damage did not significantly affect A of either leaves present during mite damage or leaves produced after the mites were killed on any other sampling date. However, a trend of reduced A of leaves present during mite infestation on the mite-damaged trees was apparent on all sampling dates after the mites were killed. Evapotranspiration (E) was not affected by mite damage. The mite damage by light intensity interaction did not have a significant effect on A or E on any sampling date.


New Forests ◽  
2005 ◽  
Vol 29 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Marcelo Schramm Mielke ◽  
Alex-Alan Furtado De Almeida ◽  
Fábio Pinto Gomes ◽  
Pedro Antonio Oliveira Mangabeira ◽  
Delmira Da Costa Silva

2022 ◽  
Vol 82 ◽  
Author(s):  
C. S. Santos ◽  
A. C. Dalmolin ◽  
A. C. Schilling ◽  
M. S. Santos ◽  
B. Schaffer ◽  
...  

Abstract Root deformation (RD) caused by errors in the pricking out process are irreversible and very difficult to detect in container-grown seedlings at the time of planting in the field. The objective of this study was to evaluate the effects of RD on leaf gas exchange, growth, biomass allocation and mineral nutrition of G. americana seedlings during the recovery phase after soil flooding. Four-months-old seedlings, with and without RD, were flooded for 42 days and their recovery was evaluated 28 days after soil drainage. There were no significant interactions between RD and soil flooding for all leaf gas exchange, growth and mineral nutrition after soil drainage, with the exception of leaf P concentrations. In plants with no RD, the P concentration in leaves of non-flooded plants was significantly higher than that of plants with RD. Soil flooding and RD did not influence leaf or root N concentrations or whole-plant N content. RD increased the K concentration in the roots, but not in the leaves. Changes in the nutrient concentrations in leaves and roots indicate that RD may affect physiological performance of seedlings after planting in the field.


Sign in / Sign up

Export Citation Format

Share Document