scholarly journals Relationship of AgNOR counts and nuclear DNA content to survival in patients with parathyroid carcinoma

2004 ◽  
Vol 11 (3) ◽  
pp. 563-569 ◽  
Author(s):  
F Lumachi ◽  
M Ermani ◽  
F Marino ◽  
A Poletti ◽  
SMM Basso ◽  
...  

The aim of this study was to evaluate the usefulness of DNA flow cytometry to determine tumor nuclear DNA index (DI), and nucleolar organizer region protein counts visualized by the argyrophil (AgNOR) technique, in confirming diagnosis and predicting clinical outcome of patients with parathyroid carcinoma (PC). We reviewed paraffin-embedded tissue sections, from 15 patients (median age 63 years, range 30–68 years) with PC who died of the disease, which were randomly compared with tissue sections from 15 age- and sex-matched patients with parathyroid adenoma (PA). The proliferative activity in parathyroid tumours as detected by DI and AgNOR counts was evaluated in all specimens. Both DI (1.37 ± 0.33 vs 1.0 ± 0.1) and AgNOR (3.01 ± 0.31 vs 1.54 ± 0.35) counts were higher (P < 0.001) (Student’s t-test) in patients with PC than in those with PA. Diploid (DI = 1), aneuploid (DI>1) and hypoploid (DI<1) neoplasms were found in 11 (PC = 4, PA = 7), 14 (PC = 11, PA = 3) and five (PC = 0, PA = 5) patients respectively. The average postoperative survival in patients with PC was 46.9 ± 37.4 months (range 21–146 months). The survivals of patients with aneuploid (n = 11) and diploid (n = 4) PC were 74.0 ± 58.1 and 34.1 ± 18.4 months (P=0.21) respectively. There was a significant relationship between DI and AgNOR counts (R=0.69, P < 0.01), but no correlation was found between survival and both DI (Rho = 0.17, P = 0.55) and AgNOR counts (Rho = 0.26, P = 0.35). Moreover, there was no correlation (P = NS) between the main preoperative biochemical parameters and survival. In conclusion, DI and AgNOR are useful in confirming the diagnosis of PC, but they are of little value in predicting the clinical outcome of patients with PC.

Rodriguésia ◽  
2019 ◽  
Vol 70 ◽  
Author(s):  
María I. Hidalgo ◽  
Eduardo J. Greizerstein ◽  
Guillermo A. Norrmann

Abstract Karyotypes can provide a relevant information about relationships and evolutionary origin among species of the Andropogon genus. This paper presents the karyotype, C+ and DAPI/CMA3 banding and DNA content of three diploid (2n=20) species belonging to section Leptopogon: A. selloanus, A. macrothrix and A. gyrans. Karyotypes of the three diploid species are symmetrical. We propose a karyotype formulae (18m + 2sm) for each of them. The three species show a pair of metacentric chromosomes with a terminal secondary constriction on short arms. Fluorochrome banding revealed different constitutive heterochromatin patterns and CMA3+/DAPI¬ terminal bands related to the nucleolar organizer region in each species. Nuclear DNA content was estimated by flow cytometry ranged from 2.22 to 2.61 pg. FISH technique revealed that these three species have two 45S rDNA loci at the distal ends of the short arms of two metacentric chromosomes. We compare the genomes of the diploids A. selloanus, A. macrothrix and A. gyrans, and the triploid A. ternatus using GISH. These technique allowed us to confirm the hypotheses that the A. selloanus, A. macrothrix and A. gyrans constitute a homogeneous group that share a common S genome that comprises just one of the genomes in the triploid A. ternatus.


Genetics ◽  
1985 ◽  
Vol 111 (2) ◽  
pp. 325-336
Author(s):  
Esther J Belikoff ◽  
Kathy Beckingham

ABSTRACT Working with the Dipteran Calliphora erythrocephala, we have tested the hypothesis that only one nucleolar organizer region (NO) is replicated during polyploidization. NO replication was examined in two very different highly polyploid nuclear types: salivary gland nuclei and nurse cell nuclei. Two strains of the organism containing NO regions with highly diagnostic nontranscribed spacer (NTS) polymorphisms were prepared and reciprocal single pair-matings between members of the strains were performed. The representation of the two distinguishable NOs in diploid and polyploid DNAs of individual F1 progeny from each cross was then examined. DNA from a total polyploid nuclear DNA preparation and from individual polyploid nuclei of both tissue types was analyzed. Our results show conclusively that both genomic NOs are replicated in individual polyploid nuclei of both types. Further, evidence for variation in the relative replication of cistrons from the two NOs by individual nuclei was obtained. The cistron types present in the NOs of both strains showed differential replication upon polyploidization. In general, the patterns of differential cistron replication seen in salivary gland and nurse cell nuclei were similar.


Oncology ◽  
1993 ◽  
Vol 50 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Takehiro Shimamoto ◽  
Ken Haruma ◽  
Shinji Tanaka ◽  
Hiroko Todo ◽  
Misaharu Yoshihara ◽  
...  

2021 ◽  
Vol 43 (3) ◽  
pp. 237-249 ◽  
Author(s):  
Thanh Dat Ta ◽  
Nomar Espinosa Waminal ◽  
Thi Hong Nguyen ◽  
Remnyl Joyce Pellerin ◽  
Hyun Hee Kim

Abstract Background DNA tandem repeats (TRs) are often abundant and occupy discrete regions in eukaryotic genomes. These TRs often cause or generate chromosomal rearrangements, which, in turn, drive chromosome evolution and speciation. Tracing the chromosomal distribution of TRs could therefore provide insights into the chromosome dynamics and speciation among closely related taxa. The basic chromosome number in the genus Senna is 2n = 28, but dysploid species like Senna tora have also been observed. Objective To understand the dynamics of these TRs and their impact on S. tora dysploidization. Methods We performed a comparative fluorescence in situ hybridization (FISH) analysis among nine closely related Senna species and compared the chromosomal distribution of these repeats from a cytotaxonomic perspective by using the ITS1-5.8S-ITS2 sequence to infer phylogenetic relationships. Results Of the nine S. tora TRs, two did not show any FISH signal whereas seven TRs showed similar and contrasting patterns to other Senna species. StoTR01_86, which was localized in the pericentromeric regions in all S. tora, but not at the nucleolar organizer region (NOR) site, was colocalized at the NOR site in all species except in S. siamea. StoTR02_7_tel was mostly localized at chromosome termini, but some species had an interstitial telomeric repeat in a few chromosomes. StoTR05_180 was distributed in the subtelomeric region in most species and was highly amplified in the pericentromeric region in some species. StoTR06_159 was either absent or colocalized in the NOR site in some species, and StoIGS_463, which was localized at the NOR site in S. tora, was either absent or localized at the subtelomeric or pericentromeric regions in other species. Conclusions These data suggest that TRs play important roles in S. tora dysploidy and suggest the involvement of 45S rDNA intergenic spacers in “carrying” repeats during genome reshuffling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jung-Hyun Kim ◽  
Vladimir N. Noskov ◽  
Aleksey Y. Ogurtsov ◽  
Ramaiah Nagaraja ◽  
Nikolai Petrov ◽  
...  

AbstractThe rDNA clusters and flanking sequences on human chromosomes 13, 14, 15, 21 and 22 represent large gaps in the current genomic assembly. The organization and the degree of divergence of the human rDNA units within an individual nucleolar organizer region (NOR) are only partially known. To address this lacuna, we previously applied transformation-associated recombination (TAR) cloning to isolate individual rDNA units from chromosome 21. That approach revealed an unexpectedly high level of heterogeneity in human rDNA, raising the possibility of corresponding variations in ribosome dynamics. We have now applied the same strategy to analyze an entire rDNA array end-to-end from a copy of chromosome 22. Sequencing of TAR isolates provided the entire NOR sequence, including proximal and distal junctions that may be involved in nucleolar function. Comparison of the newly sequenced rDNAs to reference sequence for chromosomes 22 and 21 revealed variants that are shared in human rDNA in individuals from different ethnic groups, many of them at high frequency. Analysis infers comparable intra- and inter-individual divergence of rDNA units on the same and different chromosomes, supporting the concerted evolution of rDNA units. The results provide a route to investigate further the role of rDNA variation in nucleolar formation and in the empirical associations of nucleoli with pathology.


2005 ◽  
Vol 32 (5) ◽  
pp. 323-328 ◽  
Author(s):  
Rosana F. Romao-Correa ◽  
Durvanei A. Maria ◽  
Mithitaka Soma ◽  
Mirian N. Sotto ◽  
Jose Antonio Sanches ◽  
...  

2016 ◽  
Vol 22 (3) ◽  
pp. 621-629 ◽  
Author(s):  
Tomás Nepomuceno-Mejía ◽  
Reyna Lara-Martínez ◽  
Roberto Hernández ◽  
María de Lourdes Segura-Valdez ◽  
Luis F. Jiménez-García

AbstractNucleolar assembly is a cellular event that requires the synthesis and processing of ribosomal RNA, in addition to the participation of pre-nucleolar bodies (PNBs) at the end of mitosis. In mammals and plants, nucleolar biogenesis has been described in detail, but in unicellular eukaryotes it is a poorly understood process. In this study, we used light and electron microscopy cytochemical techniques to investigate the distribution of nucleolar components in the pathway of nucleolus rebuilding during closed cell division in epimastigotes of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis. Silver impregnation specific for nucleolar organizer regions and an ethylenediaminetetraacetic acid regressive procedure to preferentially stain ribonucleoprotein revealed the conservation and dispersion of nucleolar material throughout the nucleoplasm during cell division. Furthermore, at the end of mitosis, the argyrophilic proteins were concentrated in the nucleolar organizer region. Unexpectedly, accumulation of nucleolar material in the form of PNBs was not visualized. We suggest that formation of the nucleolus in epimastigotes of T. cruzi occurs by a process that does not require the concentration of nucleolar material within intermediate nuclear bodies such as mammalian and plant PNBs.


Sign in / Sign up

Export Citation Format

Share Document