A FLUORESCENCE ASSAY OF PROGESTERONE

1964 ◽  
Vol 30 (3) ◽  
pp. 293-305 ◽  
Author(s):  
R. B. HEAP

SUMMARY A fluorescence assay for the quantitative estimation of progesterone has been developed. The method consists of ether extraction of progesterone from alkali-treated tissue or plasma, isolation by descending paper chromatography, conversion to 20β-hydroxypregn-4-en-3-one using the enzyme 20β-hydroxysteroid dehydrogenase, purification by paper chromatography and fluorimetric estimation of the 20β-hydroxy isomer in 2:1 conc. H2SO2: 80% ethanol reagent. The addition of a trace amount of [4-14C]progesterone to each sample was used to correct for losses incurred during the above procedure. The method was more sensitive and more specific than available methods of chemical estimation. Increased specificity was achieved by a number of modifying stages including enzymic conversion and chromatographic purification, the fluorescence reaction being carefully controlled to overcome its lack of specificity. The fluorescence of eluted paper blanks had a consistently low value of 4·5 ± 0·1 nanogram (ng.) Recoveries of known amounts of steroid from male guinea-pig plasma were 38·3 ± 7·3% and 35·4 ± 3·3%, measured by fluorescence assay and 14C counting respectively. Progesterone was estimated in rabbit ovarian tissue by fluorescence assay and u.v. spectrophotometry when the concentrations were sufficiently high. The fluorescence assay gave values which were slightly lower than by spectrophotometry. The technique has been applied routinely to blood plasma and other tissues of several mammalian species including laboratory animals.

2008 ◽  
Vol 53 (No. 8) ◽  
pp. 434-444 ◽  
Author(s):  
J. Calka ◽  
M. Zalecki ◽  
K. Wasowicz ◽  
M.B. Arciszewski ◽  
M. Lakomy

Present knowledge concerning the organization of cholinergic structures of the spinal cord has been derived primarily from studies on small laboratory animals, while there is a complete lack of information concerning its structure in the pig. In the present study we employed choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) immunocytochemistry and acetylcholinesterase (AChE) histochemistry to identify the cholinergic neuronal population in the thoracolumbar and sacral spinal cord of the pig. The distribution of ChAT-, VAChT- and AChE-positive cells was found to be similar. Distinct groups of cholinergic neurons were observed in the gray matter of the ventral horn, intermediolateral nucleus, intermediomedial nucleus as well as individual stained cells were found in the area around the central canal and in the base of the dorsal horn. Double staining confirmed complete colocalization of ChAT with AChE in the ventral horn and intermediolateral nucleus although in the intermediomedial nucleus only 64% of the AChE-positive neurons expressed ChAT-immunoreactivity, indicating unique, region restricted, diversity of ChAT and AChE staining. Our results revealed details concerning spatial distribution and morphological features of the cholinergic neurons in the thoracolumbar and sacral spinal cord of the pig. We also found that the pattern of distribution of cholinergic neurons in the porcine spinal cord shows great similarity to the organization of the cholinergic system in other mammalian species studied.


1957 ◽  
Vol 89 (10) ◽  
pp. 457-464 ◽  
Author(s):  
J. L. Auclair ◽  
J. B. Maltais ◽  
J. J. Cartier

In field investigations on the relative resistance of varieties of peas, Pisum sativum L., to the pea aphid, Acyrthosiphon pisum (Harr.), the average number of aphids per terminal growth for 13 years (Maltais, 1937, 1950, 1951, and unpublished technical report, 1950-54) for six varieties was as follows: Perfection, 39.6; Daisy, 32.6; Lincoln, 35.6; Laurier (H-103), 9.8; Champion of England, 11.8; and Melting Sugar, 16.8. In a preliminary investigation by Auclair and Maltais (1950), 11 free amino acids were detected in pea plant extracts by paper chromatography. From a visual comparison of chromatograms, the variety Perfection appeared to contain a higher concentration of most free amino acids than the variety Laurier. This is a report on the quantitative estimation of the free and total amino acid contents of the three susceptible varieties (Perfection, Daisy, and Lincoln) and the three resistant varieties (Laurier, Champion of England, and Melting Sugar) by the method of paper chromatography.


2019 ◽  
Vol 13 ◽  
pp. 117955811984800 ◽  
Author(s):  
Taichi Akahori ◽  
Dori C Woods ◽  
Jonathan L Tilly

Historically, approaches designed to offer women diagnosed with cancer the prospects of having a genetically matched child after completion of their cytotoxic treatments focused on the existing oocyte population as the sole resource available for clinical management of infertility. In this regard, elective oocyte and embryo cryopreservation, as well as autologous ovarian cortical tissue grafting posttreatment, have gained widespread support as options for young girls and reproductive-age women who are faced with cancer to consider. In addition, the use of ovarian protective therapies, including gonadotropin-releasing hormone agonists and sphingosine-1-phosphate analogs, has been put forth as an alternative way to preserve fertility by shielding existing oocytes in the ovaries in vivo from the side-effect damage caused by radiotherapy and many chemotherapeutic regimens. This viewpoint changed with the publication of now numerous reports that adult ovaries of many mammalian species, including humans, contain a rare population of oocyte-producing germ cells—referred to as female germline or oogonial stem cells (OSCs). This new line of study has fueled research into the prospects of generating new oocytes, rather than working with existing oocytes, as a novel approach to sustain or restore fertility in female cancer survivors. Here, we overview the history of work from laboratories around the world focused on improving our understanding of the biology of OSCs and how these cells may be used to reconstitute “artificial” ovarian tissue in vitro or to regenerate damaged ovarian tissue in vivo as future fertility-preservation options.


1984 ◽  
Vol 100 (1) ◽  
pp. 61-66 ◽  
Author(s):  
G. Jenkin ◽  
R. T. Gemmell ◽  
G. D. Thorburn

ABSTRACT The mechanism by which prostaglandin F2α terminates luteal function in the sheep is unclear even though it is used extensively in animal husbandry. At the time of luteal regression, a decrease in 3β-hydroxysteroid dehydrogenase (3β-HSD) activity is apparent in the corpus luteum, but it is not known whether the decrease in enzyme activity is the primary cause of structural luteolysis. The effect of trilostane, a 3β-HSD inhibitor, on luteal function and morphology has therefore been investigated. Intravenous injection of trilostane in the mid-luteal phase of the oestrous cycle caused a decrease in ovarian tissue progesterone content. A transient decrease in peripheral and utero-ovarian vein plasma progesterone was observed but there was no significant effect on the length of the luteal phase of the cycle. There was no significant change in plasma 13,14-dihydro-15-oxo-prostaglandin F2α during the period when plasma progesterone was depressed. Morphological examination of the corpora lutea revealed a decrease in the concentration of electron-dense granules without any other features of impending luteal regression. When plasma progesterone was reduced for more than 10 h by two injections of trilostane 4 h apart, there was again no subsequent effect on the length of the oestrous cycle or on the return to oestrus. Plasma progesterone returned to preinjection levels within 24 h of injection. This evidence suggests that competitive inhibition of 3β-HSD activity, per se, is ineffective in bringing about structural luteolysis. J. Endocr. (1984) 100, 61–66


Sign in / Sign up

Export Citation Format

Share Document